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Abstract

In this thesis, we study connections between the recent literature on multi-group fairness for
prediction algorithms and previous well-known results in graph theory, computational complexity,
additive combinatorics, information theory, and cryptography. Our starting point are the definitions
of multiaccuracy and multicalibration, which have established themselves as mathematical measures
of algorithmic fairness. Multicalibration guarantees accurate (calibrated) predictions for every
subpopulation that can be identified within a specified class of computations, whereas multiaccuracy
is a strictly weaker notion which only guarantees accuracy on average.

The task of building multiaccurate predictors is closely related to the well-known regularity
lemma, which is an older result in computational complexity. This is a central theorem that has
many important implications in different areas, including the weak Szemerédi regularity lemma in
graph theory, Impagliazzo’s Hardcore Lemma in complexity theory, the Dense Model Theorem in
additive combinatorics, computational analogues of entropy in information theory, and weaker no-
tions of zero-knowledge in cryptography. The relationship between multiaccuracy and the regularity
lemma thus implies that a multiaccurate predictor can prove all of these fundamental theorems. By
formalizing this observation, we then ask: If we start with a multicalibrated predictor instead, what
strengthened and more general versions of these fundamental theorems do we obtain? Through
the lenses of multi-group fairness, we are able to cast the notion of multicalibration back into the
realm of complexity theory and obtain stronger and more general versions of Impagliazzo’s Hard-
core Lemma, characterizations of pseudoentropy, and the Dense Model Theorem. Moreover, along
the way, we present a unified approach of all these fundamental theorems.
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Dedicated to Raquel Coronell Uribe

A theme that cuts across many domains of computer science and mathematics is to
find simple representations of complex mathematical objects such as graphs, functions,
or distributions on data. These representations need to capture how the object
interacts with a class of tests, and to approximately determine the outcome of these
tests. For example, a scientist is trying to find a mathematical model explaining
observed data about some phenomenon, such as kinds of butterflies in a forest.
A minimal criterion for success is that the model should accurately predict the results
of future observations. When is this possible?

Russell Impagliazzo, 2017 talk at the Institute for Advanced Study

Prediction algorithms assign numbers to individuals that are popularly understood as
individual “probabilities” —what is the probability of 5-year survival after cancer
diagnosis?— and which increasingly form the basis for life-altering decisions. Drawing
on an understanding of computational indistinguishability developed in complexity
theory and cryptography, we introduce Outcome Indistinguishability. Ideally, the
outcomes from this generative model should “look like” the outcomes produced by
Nature. A predictor satisfying Outcome Indistinguishability provides a generative
model that cannot be efficiently refuted on the basis of the real-life observations
produced by Nature.

Dwork et al. [DKR+21]

La concepció metafísica de la bellesa condueix a un concepte fonamental del sistema:
harmonia. L’harmonia, dirà Leibniz, és simplicitat en la multiplicitat, i en això
mateix consisteix la bellesa (...). Així, doncs, captar la bellesa és captar les relacions
que lliguen els fenòmens entre ells.

Maria Ramon Cubells [Cub17]
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1
Introduction

Undeniably, algorithms are informing decisions that reach ever more deeply into our
lives, from news article recommendations to criminal sentencing decisions to
healthcare diagnostics. This progress, however, raises (and is impeded by) a host of
concerns regarding the societal impact of computation.

TOC for Fairness: a Simons Collaboration Project

In recent years, algorithms are increasingly informing decisions that can deeply affect
our lives. Propelled by the rapid progress in machine learning and the collection of vast amounts of
data from individuals, algorithms are being deployed in all major spheres of society to assist in the
decision-making process. For example, algorithms are currently used to decide whether someone
should receive a loan, get hired for a job, receive a certain prison sentence, get accepted into
a university program, or receive a particular medical treatment [ONe17], among many other use
cases. Given the widespread use of prediction algorithms (i.e., an algorithm that assigns “scores” to
individuals), the deployment of such technology must be done responsibly and ethically. Regulators
and policy-makers have started to acknowledge this need, by pushing initiatives such as the EU AI
Act [LWM22], New York City’s AI Bias law [WAB+19], or the recent US AI Bill of Rights [HF22].

Biases in prediction algorithms. A major concern that arises in this context is whether or
not prediction algorithms are fair across different subpopulations and minority groups. This is
a crucial evaluation metric because research has shown time and time again that algorithms can
indeed demonstrate bias against certain subgroups. In 2017, Buolamwini and Gebru evaluted the
bias in automated facial analysis algorithms and datasets with respect to phenotypic subgroups,
and found that the accuracy of the algorithm was almost perfect on white men but very low on black
women [BG18]. Amazon was reported to terminate an internal AI recruiting tool that was shown
to be biased against women [Vin18], and a ProPublica study found that the COMPAS recidivism
prediction system predicts higher risks of recividism for black defendants [LMKA16].

Even though biased AI systems are a reality that pose a major societal problem, addressing it
from a technical standpoint is a big challenge that is far from being solved. Given a prediction
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algorithm, how can we quantitatively detect whether or not it is fair? This question has motivated
numerous research directions and fairness metrics.

The emerging field of algorithmic fairness. The field of algorithmic fairness, which started
to develop about a decade ago, aims to mathematically define what it means for an algorithm to
be fair. One of the first papers in the field was Fairness Through Awareness, which formalized
the principle that similar individuals should be treated similarly using a Lipschitz condition on
the classifier [DHP+12]. The literature has since then exploded with numerous definitions, which
roughly fall into either individual or group notions of fairness. The Fairness Through Awareness
work is an example of an individual fairness notion, whereas in group fairness notions we identify
a particular protected group and some statistic, and we guarantee that the statistic holds both in
the protected group and in the overall population [HKRR18].

However, both approaches have important drawbacks; for example, [DHP+12] already showed
how group fairness notions are sensitive to “fairness gerrymandering”, where we are able to artifi-
cially satisfy the mathematical definition. They give one such simple example: if a steak house does
not want members of a minority group to come to their establishment, yet they are required by law
to advertise to, say, a 20% of members of the minority group, they can choose to advertise only
to members of the minority group who are vegetarian. Then, they satisfy the fairness definition
to advertise to a 20%, yet continue to be discriminatory against the minority group. Moreover,
Chouldechova showed that some of these notions are mathematically incompatible [Cho17]. For
example, any two out of three among Demographic Parity, Equalized Odds, and Predictive Rate
Parity are incompatible with each other [BHN17]. In the case of individual fairness notions, their
major drawback is that they require specifying a metric to measure closeness between individuals
[Ilv19].

The multi-group framework and multicalibration. The multi-group framework was proposed
as a way to bridge the individual and group fairness notions [HKRR18; KNRW18]. The underlying
principle is the following: we want to establish some fairness group notion that not only one sub-
group will satisfy, but rather that every identifiable subgroup will satisfy. This versatile framework
allows us to consider the intersection of different minority subgroups, which represents reality more
accurately (e.g., the intersection of gender, race, and socioeconomic subgroups). The notion of a
multicalibrated predictor was introduced in 2018 within this multi-group framework, and has estab-
lished itself as a increasingly popular measure of algorithmic fairness [HKRR18]. A multicalibrated
predictor guarantees accurate (calibrated) predictions for every identifiable subpopulation within
a collection C of subpopulations.

The intuition behind its definition is more clearly explained with an example from the statistical
forecasting literature [Daw85]: suppose we have a predictor that predicts the probability of rain
on every day. On average, the predictor performs accurately. However, suppose that when we
condition on the day of the week being Sunday, then the accuracy significantly drops. Or, when we
condition on the day of the month being a prime number, the accuracy significantly drops. This
would indicate that, even though the predictor is accurate on average, it is not calibrated. Notice
that this is exactly the problem that was observed in the Gender Shades work by Buolamwini
and Gebru: even though the facial recognition system performs well on average, when conditioned
on individuals who are black women, the accuracy significantly drops [BG18]. The notion of
multicalibration precisely prohibits this accuracy drop when conditioning the predictor on any
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protected subgroup. Given that protected subgroups can be hard to identify in practice, the idea
behind multicalibration is to try to ensure the calibration property for as many groups as possible,
hoping that these will include many minority subgroups and their intersections. Hence, the more
expressive C is, the better fairness guarantees we achieve.

Connections to multicalibration. The notion of multicalibration has turned out to be very
useful in practice, as well as having profound mathematical connections to other notions in com-
puter science. For example, fairness concerns are very present in randomized controlled trials in
medicine, given that minority subgroups tend to be less present in these medical study, where it
harder to ensure fair representation among participants in the trial. This can cause diseases to go
underdiagnosed for certain groups of patients (e.g., for women and elderly patients) [Kra18]. Barda
et al. used a multicalibration boosting algorithm as a post-processing technique to improve the
accuracy of minority groups after the randomized controlled trial data was collected [BYR+21].

On the theory side, multicalibration has shown surprising connections and applications in many
areas of computer science. For example, the work on Omnipredictors uses the framework of multi-
calibration to perform loss minimization in machine learning that simultaneously works for a huge
family of loss functions [GKR+21], and the work on Universal Adaptability uses multicalibration to
adapt statistical findings to a large family of target distributions [KKG+22]. Multicalibration, and
the weaker counter-part notion of multiaccuracy [HKRR18], have also shown to be closely related
to the recently-proposed notion of Outcome Indistinguishability [DKR+21]. Motivated by the ar-
eas of complexity theory and cryptography, predictors that are Outcome Indistinguishable yield a
generative model for outcomes that cannot be efficiently refuted on the basis of the real-life obser-
vations [DKR+21]. The motivation behind the notion of Outcome Indistinguishability (OI) is the
following: if we were an algorithmic decision board (e.g., the equivalent of an FDA for algorithms,
where we receive algorithmic predictors and we have to determine whether they are biased or not),
how much access should we have to the predictor? For example, would we (the board) require
access to the code of the predictor, or just samples are enough for the evaluation? This could have
major implications, given that private companies usually do not disclose the code (or the data)
that was used to train predictors. In the OI paper, it is shown that passing certain tests by the
“FDA board” corresponds to guaranteeing that the predictor is multiaccurate or multicalibrated,
where the tests that correspond to multicalibration are more stringent than those that correspond
to multiaccuracy (as we would expect, given that multiaccuracy is a weaker notion) [DKR+21].

1.1 Our contributions

Our work. Motivated by all these connections, in this thesis we continue to study the mathematical
foundations of multicalibration and multi-group fairness, and we formalize deep connections to well-
established results in many areas of theoretical computer science that a priori have no relationship to
the new field of algorithmic fairness. In particular, the multiaccuracy (MA) guarantee is essentially
equivalent to the so-called regularity lemma, which is a major result in computer science [TTV09;
JP14; CCL18]. Informally, the regularity lemma states that, given an arbitrarily complex function g,
we can build a “simple” function h that “looks like” g. This is formalized using the notion of
indistinguishability with respect to a class of functions F .

The regularity lemma has connections to various fundamental and well-established theorems in
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different areas of theoretical computer science. Vadhan et al. [TTV09] observed that the regularity
lemma implies Szemerédi’s Weak Regularity Lemma [FK99], the Dense Model Theorem [RTTV08;
GT08; Tao07], and Impagliazzo’s Hardcore Lemma [Imp95]. Vadhan and Zheng presented char-
acterizations of pseudoentropy using this framework [VZ12], and Chung, Lui, and Pass presented
an interactive version of LSL in the context of zero-knowledge proofs in cryptography [CLP15].
Given the “equivalence” between the algorithmic fairness notion of multiaccuracy and the regular-
ity lemma, we see that a multiaccurate predictor can prove all of these theorems. By formalizing
this observation, we then ask: If we start with a multicalibrated predictor instead, what strengthened
and more general versions of these fundamental theorems do we obtain? Then, through the lenses
of multi-group fairness, we are able to obtain stronger versions of these theorems. This question
was recently explored in the case of Szemerédi regularity lemma in the work of [DLLT23]; in this
thesis, we focus on Impagliazzo’s Hardcore Lemma, characterizations of pseudoentropy, and the
Dense Model Theorem.

Our results thus use the tools that have been recently defined and developed in the field of
algorithmic fairness and cast these back into the realm of complexity theory. In doing so, we
obtain a new perspective on fundamental and long-standing theorems in theoretical computer
science (i.e., those that are related to the regularity lemma), which allows us to obtain stronger
and more general versions of these theorems. In particular, we obtain stronger and more general
versions of Impagliazzo’s Hardcore Lemma, characterizations of pseudoentropy, and the Dense
Model Theorem. Our proofs are based on the observation that a multicalibrated predictor induces
a partition of the domain such that each part of this partition possess some sort of “inherent”
indistinguishability. This “inherent” indistinguishability is due to the properties of a multicalibrated
predictor. Therefore, the results of this thesis demonstrate a deep connection between complexity
theory and algorithmic fairness, and we show how this connection yields fruitful results and new
insights. Moreover, throughout the exposition of this thesis, we present a unified approach of all
the fundamental theorems that we consider that are implied by the regularity lemma of Trevisan
et al. [TTV09].

Outline of the thesis. This thesis is divided into two parts. Part I (Multicalibration set-up)
presents the necessary background for both the fairness literature and the regularity lemma. We
begin by introducing the formal definition of multiaccuracy (MA) and multicalibration (MC) in
Chapter 2, including the boosting proof for building MA and MC predictors. We also establish the
facts from multicalibration that we will need in our subsequent proofs. In Chapter 3, we present
the formal statement of the regularity lemma, along with its complexity considerations, known
lower-bounds, and its connections to other theorems. We also exemplify the relationship between
MA/MC and the regularity lemma by showing how MA corresponds to the Frieze-Kannan weak
regularity lemma.

In Part II (Main Theorems), we present our main results; namely, stronger and more gen-
eral theorems for Impagliazzo’s Hardcore Lemma (Chapter 4), characterizations of pseudoentropy
(Chapter 5), and the Dense Model Theorem (Chapter 6). These three theorems present a unified
structure in both the statements and the proofs, which we explore in Chapter 7. Lastly, in Chap-
ter 8, we provide directions for future research, focused on applications of the regularity lemma to
the field of cryptography.
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2
Multi-Group Fairness Definitions

We develop and study multicalbration —a new measure of algorithmic fairness that
aims to mitigate concerns about discrimination that is introduced in the process of
learning a predictor from data. Multicalibration guarantees accurate (calibrated)
predictions for every subpopulation that can be identified within a specified class of
computations.

Hébert-Johnson et al. [HKRR18]

We begin by introducing the notation that we will be using throughout the thesis. We will
always work on a finite set X , which we call the domain. For example, in the fairness setting, X
is usually thought of as a set of individuals. In some applications, we will let X = {0, 1}n; that is,
the set of all 2n n-bit strings. This is a natural choice in theoretical computer science applications.

In the fairness setting, as discussed in the introduction, we work with functions that map X to
[0, 1], which are called scoring functions, given that they map each individual in X into a “score”.
For example, a hiring platform might assign a score between 0 and 1 to each of the candidates in the
domain X . However, one of the key points in this thesis is to demonstrate that this instantiation
of X as individuals (possibly represented as n-bit strings) is just one particular case of a broader
framework. In each of the chapters of this thesis, depending on the application, the domain X
represents a different object. For example, in the case of Szemerédi regularity lemma (Chapter 3),
X corresponds to the set of edges in a complete graph. In the case of pseudoentropy (Chapter 5),
X corresponds to the set of n-bit strings. We will always have an underlying distribution D over X ,
which determines how the elements x are sampled from D. In most cases in this thesis, D will
correspond to the uniform distribution over X .

In the context of algorithmic fairness, each x ∈ X represents an individual. We use g to denote
the “true” outcomes associated to each individual, where Y denotes the range of such outcomes;
that is, g : X → [0, 1]. In most of the applications of this thesis, the function g will actually be
boolean; i.e., g : X → {0, 1}. For example, in the case of Impagliazzo’s Hardcore Lemma [Imp95]
(Chapter 4), every x ∈ X is mapped to either 0 or 1. We use h : X → [0, 1] to denote the predictor,
which gives a “score” to each individual in X . The function h is also referred to as the simulator.
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One should think of h as the function that is trying to “mimic” or “approximate” g. The key point
is that g is allowed to be an arbitrarily complex function, while h should be of low-complexity. We
will define this term precisely in this chapter, but the idea is that h is a “simple” approximation of
the complex function g, where the notion of approximation is defined in terms of indistinguishability
with respect to a family of distinguishers. That is, h should satisfy two properties: First, it should
be “simple” (i.e., of low complexity) with respect to the class of distinguishers. Second, it should
be a good model for the function g, where “good” is measured with respect to some class of
distinguishers. In other words, h is “good” for g with respect to a class of distinguishers if none of
the distinguishers in the class can tell the difference between the outputs produced by g and the
outputs produced by h.

We use F to denote the class of distinguishers, which is an arbitrary set of functions f : X →
{0, 1}, where each f corresponds to a distinguisher. (The name of “distinguisher” is a typical term
in theoretical computer science, but the f ’s in F are simply functions.) In most applications, the
functions f are boolean-valued, although in some cases we consider real-valued distinguishers (i.e.,
f : X → [0, 1]). The point of defining how good of an approximation h is with respect to g, or,
more precisely, of defining indistinguishability between h and g in terms of the class F , is that it
allows us to instantiate the class F differently in each setting. Formally:
Definition 2.1 ((F , ϵ)-indistinguishability [TTV09]). Let X be a finite domain, F a class of func-
tions f : X → {0, 1}, g : X → [0, 1], D a distribution on X and ϵ > 0. We say that a function
h : X → [0, 1] is (F , ϵ)-indistinguishable from g on D if, for all f ∈ F ,∣∣ E

x∼D
[f(x) · (g(x)− h(x))]

∣∣ ≤ ϵ.

We remark that x ∼ D indicates that x is sampled from X according to distribution D. More-
over, by linearity of expectation, the condition stated in Definition 2.1 is equivalent to requiring the
absolute value of the difference between Ex∼D[f(x)g(x)] and Ex∼D[f(x)h(x)] to be small. Naturally,
we are interested in the cases where g is a “complex” function, whereas h is a “simple” function.
(Otherwise, setting h := g trivially satisfies the above definition.) In the case of algorithmic fair-
ness, g is complex because it corresponds to the “true” predictions in real-life (e.g., will someone
become sick), which can be arbitrarily complex (see [DKR+21] for an extended discussion of these
complexity considerations in the setting of algorithmic fairness).

The difference between a “complex” and a “simple” function is quantified in terms of complexity,
and a recurring idea that we will come back to throughout the thesis is that of the complexity of F .
Intuitively, we think of the complexity of F as how “hard” it is to compute the functions f in F .
Normally, in theoretical computer science, the notion of circuit complexity is used to formally
capture this idea: the complexity of a function corresponds to the size of a circuit that computes
it. A recurring idea in theoretical computer science is that restricting this complexity in some ways
can enable results that would otherwise be impossible. For example, in cryptography, we usually
work with polynomially-sized distinguishers, instead of computationally unbounded distinguishers,
and many fruitful results have arisen due to this important distinction.

As in the case of the domain X , each application in this thesis will require instantiating F
accordingly. For example, in the case of Szemerédi regularity lemma for graphs on n vertices
(Chapter 3), the domain X corresponds to [

(
[n]
2

)
]; that is, the set of pairs of elements from [n]. In
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turn, the set F corresponds to a set of indicator cut functions in a graph; i.e., for every disjoint
set of vertices S, T of the graph, F corresponds to the set of functions fS,T corresponds to the
characteristic function of the set of edges having one endpoint in S and one in T [TTV09]. In other
settings, F corresponds to the family of functions computable by a circuit of size s.

Remark 2.2. Throughout this thesis, we always assume that the constant 0 and 1 functions are
in the class F , which we denote by 1 and 0, respectively. That is, 1(x) = 1 and 0(x) = 0 for all
x ∈ X .

Remark 2.3. In some applications, we will consider the closure F ′ of F under “negation”. That
is, F ′ := {f,−f | f ∈ F}.

In the fairness setting, the distinguishers always correspond to membership indicator functions,
where membership is being evaluated against a set of protected subgroups. The idea is as follows:
the motivation behind the notions of multiaccuracy and multicalibration is to ensure that members
that belong to protected subgroups continue to receive accurate predictions. To do so, we specify
a collection C of protected subgroups (which can intersect). Then, for each S ∈ C, we consider
the function cS : X → {0, 1}, where cS(i) = 1 if and only if i ∈ S. That is, cS corresponds to the
membership indicator function to the protected subgroup S. In the algorithmic fairness applications
of multiaccuracy and multicalibration, we set F to contain the functions cS for every S ∈ C. In
the fairness setting, we understand the arbitrarily-complex function g as the “true” probabilities in
real life. For example, if we are studying a certain illness, then g(x) ∈ {0, 1} represents the real-life
outcome of individual x; i.e., g(x) = 1 indicates that individual x gets sick. Then returning to our
explanation above to what a “good approximation” of g by h means in this context, it should now be
clear why this indstinguishability framework helps ensure fairness guarantees: We are requiring the
predictor h to be a good model for g even when conditioning on membership to a certain protected
subgroup. In other words, if S ∈ C corresponds to the group of women, then the distinguisher cS
must be unable to distinguish between the outputs of g versus the outputs of h conditioned on the
fact that the inputs to g and h are individuals who are women. Then, h must correctly predict the
illnesses not just among all individuals in X but also among the group of women from X .

The richness of this multi-group fairness model —namely, considering a class of protected
subgroups which can intersect— is one of its key advantages over individual and group fairness
notions. The above explanation also highlights the idea that we can always understand a boolean
distinguisher as a membership indicator function of some set (i.e., the characteristic function of the
set). The will be a recurring perspective throughout the thesis, as we will be interchanging between
sets and their characteristic functions. (In particular, we can always regard a boolean distinguisher
as a membership indicator function of some set.)

Summarizing, there are three main functions in play in most definitions and theorems through-
out this thesis, all of which are defined over the domain X :

f The distinguishers, which constitute the class of distinguishers F
g The arbitrarily-complex function that we wish to approximate
h The predictor or simulator, which approximates g relative to F
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2.1 Multiaccuracy and multicalibration

We can now introduce the formal definitions of multiaccuracy and multicalibration, which capture
the intuitive ideas discussed above. Whenever we write x ∼ µ below an expectation E or a
probability Pr, we mean that x is sampled according to the distribution µ. While the original
notions of multiaccuracy and multicalibration in Hébert-Johnson et al. [HKRR18] were stated for
boolean distinguishers given their algorithmic fairness setting, many subsequent works state the
definition with real-valued distinguishers (e.g., [KGZ19]). We adopt this convention, given that the
regularity lemma of Trevisan et al. [TTV09] that we will see in Chapter 3 which is analogous to
multiaccuracy uses real-valued distinguishers f as well.
Definition 2.4 (Multiaccuracy [HKRR18; KGZ19; GKR+21]). Let X be a finite domain, F a col-
lection of functions f : X → [0, 1], g : X → [0, 1] an arbitrary function, D a probability distribution
over X , and ϵ > 0. We say that h : X → [0, 1] is an (F , ϵ)-multiaccurate (MA) predictor for g on D
if, for all f ∈ F , ∣∣ E

x∼D
[f(x) · (g(x)− h(x))]

∣∣ ≤ ϵ.

Remark 2.5. In many of our applications, the distribution D on X will be the uniform distribution
on X , in which case we will simply write Ex∼X . If we do not specify what distribution D we are
using when invoking the multiaccuracy (and multicalibration) definitions (Definition 2.4), it should
be understood that D is implicitly taken to be the uniform distribution over X .

Definition 2.4 guarantees that the predictor h appears unbiased according to a class of tests
defined by F . We remark that multiaccuracy is defined with respect to F , g, ϵ, and D.

The notion of accuracy considered in Definition 2.4 is weaker than what is referred to as “accu-
racy” in some machine learning contexts, given that Definition 2.4 considers accuracy in expectation.
That is, it requires the predictions given by h, averaged over the set of x ∈ X such that f(x) = 1

for each f ∈ F , to be close in expectation to the “true” values given by g, up to some slack. More-
over, since we always assume that the constant function 1 is in F (Remark 2.2), the definition of
multiaccuracy also implies that the expected values of h and g averaged over the entire domain X
must also be close up to some slack.

For this thesis, the key observation about the definition of multiaccuracy is that it corresponds
exactly to the definition of (F , ϵ)-indistinguishability (Definition 2.1). That is, saying that a pre-
dictor h is (F , ϵ)-multiaccurate for g is equivalent to saying that the functions g and h are (F , ϵ)-
indistinguishable. Importantly, as we will develop in the following chapter (Chapter 3), this notion
of indistinguishability with respect to a class of functions F is a classical and fundamental concept
in theoretical computer science first, which was first introduced in [TTV09] and later developed
in [JP14; CCL18]. However, the stronger notion of multicalibration, which we are about to de-
fine, has only been recently defined in the context of algorithmic fairness, and does not have an
analogue to older notions of indistinguishability. The goal of this thesis is precisely to study the
implications of the new notion of multicalibration in the classic indistinguishability results, given
that multicalibration is a strictly stronger notion than multiaccuracy.

Multiaccuracy can be a weak guarantee. While MA guarantees unbiased predictions, it is not
enough to prevent discrimination in an algorithmic fairness setting. Consider the following example
discussed in [HKRR18]: suppose that g(x) = 1/2 for all x ∈ X , and h is such that h(x) = 0 for
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half of the individuals in X and h(x) = 1 for the other half. Then, g and h have the same expected
value, yet h has artificially created two subgroups with opposite outcomes, which can be deemed
disciminatory.

To avoid this, we consider the expected value on each of the level sets of h.
Definition 2.6. Given a finite domain X and a predictor h : X → [0, 1] and v ∈ [0, 1], we let

Xv := {x ∈ X | h(x) = v}.

We call each Xv for v ∈ range(h) a level set of h.
Then, by considering all v ∈ range(h), we obtain a partition of X given by the level sets Xv.

For the notion of multicalibration, we want the predictor to be unbiased within each level set. We
capture this notion by conditioning on the value of h:
Definition 2.7 (Multicalibration [HKRR18; GKR+21]). Let X be a finite domain, F a collection
of functions f : X → [0, 1], g : X → [0, 1] an arbitrary function, D a probability distribution over X ,
and ϵ > 0. We say that h : X → [0, 1] is an (F , ϵ)-multicalibrated (MC) predictor for g on D if for
all f ∈ F and for all v ∈ [0, 1] such that Pr[h(x) = v] > 0,∣∣∣ E

x∼D
[f(x) · (g(x)− h(x)) | h(x) = v]

∣∣∣ ≤ ϵ.

An intuitive way of thinking about multicalibration is that it ensures multiaccuracy on each of
the level sets of h. That is, multiaccuracy is a global condition, which ensures indistinguishability
between g and h on average over the domain X . On the other hand, multicalibration is a local
condition, which ensures indistinguishability between g and h within each level set. Importantly,
multicalibration also ensures indistinguishability “globally”, given that h being multicalibrated
implies that h is multiaccurate as well. This is an important idea which we will come back to in our
results in Part II. However, a key fact about the multicalibration condition (which will also be key
in our subsequent proofs) is that, by definition of a level set, h(x) = v for all x ∈ Xv. Therefore,
we can write the MC condition as∣∣∣ E

x∼D
[f(x) · (g(x)− v) | h(x) = v]

∣∣∣ ≤ ϵ.

In particular, this implies that the constant value v ∈ [0, 1] is within ±ϵ of Ex∼D|Xv
[g(x)], where

D|Xv denotes the conditional distribution. In contrast, in the MA condition, we have no further
control over the values of the simulator h. Being able to operate with this constant value v rather
than any possible value in [0, 1] will be important in some of our results, such as those described
in Chapter 4. Clearly, multicalibration is a stronger notion than multiaccuracy, which is what will
allow us to obtain stronger versions of the fundamental theorems that are implied by multiaccuracy
by using the notion of multicalibration instead.

Another helpful way of understanding calibration in the fairness setting is the following. Recall
that we interpret the outputs of h as prediction probababilities; for example, we want h(x) = 60%
to indicate that individual x is 60% likely to become sick. From this point of view, multicalibration
requires that the predictions can be meaningfully interpreted as conditional probabilities. That is,
given a set S ∈ C, ϵ-calibration with respect to S requires that the average of the true probabilities
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of the individuals receiving prediction v is ϵ-close to v. This perspective of fairness as providing
meaning to the concept of “individual probabilities” is thoroughly discussed in the paper on outcome
indistinguishability [DKR+21].

Level sets of h. Throughout this thesis, it will be useful to think of the multicalibration notion
in terms of the level sets of the simulator h. Because X is a finite domain, the range of h is finite as
well. Therefore, h induces a finite partition of the domain X into level sets Xv, where each Xv ⊂ X
contains the points x ∈ X such that h(x) = v. We will continue to explore the relationship between
a multicalibrated predictor and a partition of the domain X in Section 2.3, where we introduce
the notion of a multicalibrated partition. As we will formalize, we will see that a multicalibrated
predictor h induces a multicalibrated partition, by letting the partition correspond to the level sets
of h. Having established this relationship, we can use the algorithms from the algorithmic fairness
literature which show how to construct an MC predictor to show that we can construct an MC
partition as well. Then, in the proofs of our new theorems in Part II, we will work directly with
the definition of a multicalibrated partition, without going back to multicalibrated predictors.

Figure 2.1: The level sets of the predictor h induce a partition of the domain X . The definition of multicalibration asks
that g and h are close in expectation within each of the level sets of h.

The size of the level sets. An important consideration regarding Definition 2.7 is that of the size
of the level sets of the predictor h. While the definition of multicalibration as stated in Definition 2.7
captures the right intuition, in practice we are not able to make any guarantees about the level sets
that are too small. Namely, we need to consider the quantity Prx∼D[x ∈ Xv] for each v ∈ range(h).
As we discuss in Section 2.4, in practice, when working in a machine learning setting, we need to
learn the predictor h from samples (x, g(x)), and if a level set is too small then we cannot gather
enough samples that for that level set, so the task becomes statistically impossible [Kim20].

There are two possible ways of relaxing the multicalibration definition in order to account for
the size level sets and hence be able to build an MC predictor: One is to include a parameter γ

which establishes a lower bound on the sizes of the level set that we consider. That is, the MC
condition is only guaranteed for level sets that occupy at least a γ fraction of the domain X , so
that

Pr
x∼D

[x ∈ Xv] ≥ γ.

Notice that whenever D corresponds to the uniform distribution (which will usually be the case in
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our setting, then Prx∼D[x ∈ Xv] = |Xv|/|X |. This is why we can think of the sets that we discard
as the level sets that are “too small”.

This is the type of approach undertaken in [HKRR18]. Formally:

Definition 2.8 (Approximate multicalibration [HKRR18; GKR+21]). Let X be a finite
domain, F a collection of functions f : X → [0, 1], g : X → [0, 1] an arbitrary function, D
a probability distribution over X , and ϵ, γ > 0. We say that h : X → [0, 1] is an (F , ϵ, γ)-
approximately multicalibrated (MC) predictor for g on D if for all f ∈ F and for all v ∈ [0, 1]

such that Prx∼D[x ∈ Xv] ≥ γ,∣∣∣ E
x∼D|v

[f(x) · (g(x)− h(x)) | h(x) = v]
∣∣∣ ≤ ϵ,

where D|v denotes the conditional distribution D|h(x)=v for v ∈ [0, 1] in the range of h.

Another option is to guarantee the multicalibration condition on average over the domain:
Definition 2.9 (Multicalibration on average). Let X be a finite domain, F a collection of functions
f : X → [0, 1], g : X → [0, 1] an arbitrary function, D a probability distribution over X , and ϵ > 0.
We say that a predictor h : X → [0, 1] is (F , ϵ)-multicalibrated on average (MCoA) for g on D if,
for all f ∈ F ,

E
Xv∼P(D)

∣∣∣ E
x∼D|v

[f(x) · (g(x)− h(x))]
∣∣∣ ≤ ϵ,

where D|v denotes the conditional distribution D|h(x)=v for v ∈ [0, 1] in the range of h, and P(D)
denotes the distribution that selects each Xv with probability

(∑
x∈Xv

D(x)
)
/
(∑

x∈X D(x)
)
.

Then, when we consider a fixed level set Xv = {x ∈ X | h(x) = v}, it follows that∣∣∣ E
x∼D|v

[f(x) · (g(x)− h(x))]
∣∣∣ ≤ ϵ

PrD[x ∈ Xv]
.

When D corresponds to the uniform distribution over X , the multicalibration condition becomes∣∣∣ E
x∈Xv

[f(x) · (g(x)− h(x))]
∣∣∣ ≤ ϵ · |X |

|Xv|
,

given that
E

x∈Xv

[f(x) · (g(x)− h(x))] = E
x∼X

[f(x) · (g(x)− h(x)) | h(x) = v]

and |Xv|/|X | = Prx∼X [x ∈ Xv].
In this second approach, we allow the indistinguishability parameter to degrade with the size

of the level set (the smaller Xv, the worse the guarantee becomes), but if we re-parametrize the
second approach by setting ϵ← ϵγ, we obtain exactly the first definition of approximate MC, given
that ∣∣∣ E

x∈Xv

[f(x) · (g(x)− h(x))]
∣∣∣ ≤ ϵ · γ · |X |

|Xv|
≤ ϵ · |Xv|

|X |
· |X |
|Xv|

= ϵ.

In this thesis, we will be using the first relaxation of the notion of multicalibration; namely, approx-
imate multicalibration (Definition 2.8). However, we also include the definition of MC on average
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for two reasons: first, to illustrate that there are other possible ways of relaxing the notion of
multicalibration (and several others exist in the literature, such as that of “swap multicalibration”
[GKR23]). Second, as we now develop, a key property that we will require of an MC predictor is
that it has “not too many” level sets. In particular, for an approximation parameter ϵ, we show
that there always exists an (approximated) MC predictor that only has O(1/ϵ) level sets. While
this is true of both approximate MC and MCoA, we write the proof for the case of MCoA because
it is shorter, and it conveys the key idea behind it (namely, this can be achieved by discretizing the
domain [0, 1]).
Low complexity of the simulator. A key property of a multicalibrated predictor that we
will require throughout the thesis is that it is of low-complexity. We will formalize this notion
in Section 2.3, where we discuss multicalibrated partitions, but there are two key intuitive ideas
behind this notion. The first is that h should be of low-complexity with respect to the family of
distinguishers F . We can think of this as saying that if all of the f ∈ F are “easy” to compute,
then h can only be “slightly harder” to compute that the f ∈ F . In Section 2.2, we show that
we can indeed build a multicalibrated predictor h that is not much harder to compute than the
functions in the class of distinguishers F . To do so, we provide a boosting algorithm to build an
MC predictor h that makes oracle calls to the distinguishers.

Second, the predictor h should not have “too many” level sets, so that it induces a partition
P on X such that |P| is not too large. In particular, we will now show that we can upper-bound
the number of level sets of h by O(1/ϵ), where ϵ corresponds to multicalibration parameter. To do
so, we need to introduce a discretization on the values v ∈ [0, 1]. For this proof, we will make use
of the second approach discussed on approximate multicalibration in this section (i.e., MCoA as in
Definition 2.9), given that it makes the notation clearer.
Definition 2.10 (λ-discretization). Let 0 < λ < 1. The λ-discretization of [0, 1] is the set

Λ[0, 1] =
{
0,

λ

2
,
3λ

2
,
5λ

2
, . . . ,

nλ

2
, 1
}
,

where n is the largest odd integer smaller than 2/λ.
We will now show that given this discretization, the number of level sets of a multicalibrated

predictor h can be bounded by O(1/λ). The intuition is as follows: Given a multicalibrated
predictor h with m level sets, where m > 1/λ, we round each of the values h(x) to the closest point
in Λ[0, 1]. Then, after the rounding, h has at most 1/λ level sets, yet the rounding can only have
changed each output of h by at most λ. Therefore, the multicalibration property of h is maintained
after the rounding (up to an additive factor of λ). Formally:

Claim 2.11. Let X be a finite domain, let F be a family of functions f : X → [0, 1], let g : X → [0, 1]

be an arbitrary function, and let ϵ, λ ∈ (0, 1). If h is an (F , ϵ)-MCoA predictor for g, then there
exists an (F , ϵ+ λ/2)-MCoA predictor h′ for g such that h′ has O(1/λ) level sets.

Proof. We define h′ as follows: for each x ∈ X , the value h′(x) is equal to Round(h(x)), where
the function Round : [0, 1] → Λ[0, 1] maps h(x) to the closest value in Λ[0, 1] (rounding up in the
case of ties). By definition of λ-discretization, this implies that |h(x)− h′(x)| ≤ λ/2. If we denote
X ′

w = {x ∈ X | h′(x) = w} for each w ∈ range(h′), then X ′
w = ∪v Xv, where w − λ

2 ≤ v ≤ w + λ
2
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with v ∈ range(h). For each w ∈ range(h′), we have∣∣∣ E
x∼D|w

[f(x) · (g(x)− h′(x)]
∣∣∣ ≤ ∣∣∣ E

x∼D|w
[f(x) · (g(x)− h(x)]

∣∣∣+ E
x∼D|w

[
f(x) · |h(x)− h′(x)|

]
≤
∣∣∣ E
x∼D|w

[f(x) · (g(x)− h(x)]
∣∣∣+ λ/2,

where D|w denotes D|h′(x)=w in this case. Moreover, if we denote by P ′(D) the distribution that
selects X ′

w for w ∈ range(h′) and we denote by P(D|w) the one that selects Xv for v ∈ range(h)
with w − λ

2 ≤ v ≤ w + λ
2 , then

E
X′

w∼P ′(D)

∣∣∣ E
x∼D|w

[f(x) · (g(x)− h(x)]
∣∣∣ = E

X′
w∼P ′(D)

∣∣∣ E
Xv∼P(D|w)

E
x∼D|v

[f(x) · (g(x)− h(x)]
∣∣∣

≤ E
X′

w∼P ′(D)
E

Xv∼P(D|w)

∣∣∣ E
x∼D|v

[f(x) · (g(x)− h(x)]
∣∣∣

= E
Xv∈P(D)

∣∣∣ E
x∼D|v

[f(x) · (g(x)− h(x)]
∣∣∣ ≤ ϵ.

Therefore, h′ is (F , ϵ+ λ/2)-multicalibrated on average.

In the case of MCoA, while the above argument works for any λ, for our purposes we set λ := ϵ,
which implies that if we can construct an MCoA predictor, then we can obtain an MCoA predictor
with O(1/ϵ) level sets.

Remark 2.12. As stated above, in this thesis we will be using the notion of approximate MC
instead of MCoA. However, using a similar discretization argument as in Claim 2.11, we can obtain
an approximate MC predictor with O(1/ϵ) level sets, independent of the discretization parameter λ.
Therefore, in what follows, we can always assume that a multicalibrated predictor with parameter ϵ
(in the case of both approximate MC and MCoA) has O(1/ϵ) level sets.

2.2 Building multiaccurate and multicalibrated predictors

Multiaccuracy and multicalibration are both definitions: they are properties that a predictor h

might or might not satisfy. The natural follow-up question is then is whether these two notions are
efficiently realizable. That is, given a family of functions F , an arbitrary function g, a distribution
D and a parameter ϵ, is it feasible to build a predictor h that satisfies this definitions? As it is
usually the case in theoretical computer science, by “feasible” we mean polynomial-time (we will be
using circuit size as the complexity measure), although we will also describe the specific complexity
parameters of the different algorithms to build MA and MC predictors. (As we have explained,
given that multiaccuracy is a weaker notion than multicalibration, we remark that a multicalibrated
predictor will also satisfy multiaccuracy, but the converse is not true [Kim20].)

Hébert-Johnson et al. were the first to answer this question in the positive in the context
of algorithmic fairness [HKRR18]; since then, many algorithms for building MC predictors have
recently emerged [GKSZ22; GRSW22; GHK+22; GKR23; NR23; GHK+23]. We first need to
formalize this notion of feasibility. There are two key aspects to it: first, in order to be able to talk

15



about complexity, we need to formalize the model of computation. A common way of doing so in
theoretical computer science is to use circuit size as the complexity measure. In particular, boolean
circuits are composed of gates and inputs that are connected by wires. The wires carry a signal
that represents either the value 0 or 1. Each gate corresponds to either the OR, AND, or NOT
operation [Bar20]. For example, in the case of an OR gate, it has two incoming wires, and one or
more outgoing wires. If these two incoming wires carry the signals a, b for a, b ∈ {0, 1}, then the
signal on the outgoing wires will be OR(a, b).

Figure 2.2: Example of a boolean circuit for computing the XOR function.

We say that a circuit C computes a function f if f(x) = C(x) for each input value x. When we
use the term circuit size for a circuit C, this corresponds to the number of gates in C.

Once we have formalized the notion of complexity, the other key notion is that of relative
complexity. In particular, we will always consider the complexity of the predictor h with respect to
the complexity of the class of distinguishers F . This is formalized by allowing another type of gates
in the circuits, called oracle gates. These are gates that are instantiated with functions f from F .
As we formalize in Definition 2.13, we count the number of oracle gates separately from the circuit
size. As we will see in Algorithm 1, we will build a MA/MC by a boosting-type algorithm which
repeatedly uses oracle-calls to the distinguishers f ∈ F in order to satisfy the MA/MC condition
by the end.
Definition 2.13 (Relative complexity of a function [JP14, Definition 6]). Let F be a family of
functions f : X → [0, 1]. A function h has complexity (t, q) relative to F if it can be computed by
an oracle-aided circuit of size t with q oracle gates, where each oracle gate is instantiated with a
function from F .
Definition 2.14. Given an arbitrary class of functions F , we denote by Ft,q the class of functions
that have complexity at most (t, q) relative to F .

Remark 2.15. From Definitions 2.13 and 2.14 it follows that when working with the class Ft,q

we can always assume that q ≤ t. When we present our theorems in Part II, we will only be
concerned with the parameter t (i.e., the total number of gates), in which case we will drop the
second parameter q and write Ft as a short-hand for Ft,·.

Remark 2.16. In some applications, F is a class of distinguishers implemented by size-s circuits.
In that case, every function in Ft,q can be computed by a circuit of size t+ sq.

The notion of relative complexity captures the idea that we can make oracle calls to the functions
in F , which do not factor into the complexity. This become clearer after we analyze Algorithm 1
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below. We will also then provide more intuition behind the notion of relative complexity by ex-
plaining how we can express the simulator h as a linear combination of the distinguishers f ∈ F ,
and then the number of such distinguishers in the linear combination corresponds precisely to the
number of oracle gates in the oracle-aided circuit for h.

Having formally defined the notion of relative complexity, we can now show that the notions of
multiaccuracy and multicalibration are indeed realizable by a predictor h of low complexity with
respect to F .

Theorem 2.17 (Building MA predictors [HKRR18; DKR+21]). For any family F of functions
f : X → [0, 1], a function g : X → [0, 1], a distribution D on the domain X , and a parameter ϵ,
there exists an (F , ϵ)-multiaccurate predictor h such that h ∈ Ft,q, where t = O(1/ϵ2 · log(|X |/ϵ))
and q = O(1/ϵ2).

Corollary 2.18. If F is a class of distinguishers implemented by size-s circuits, a multiaccurate
simulator h can be implemented by a circuit of size O(s/ϵ2 · log(|X |/ϵ)).

As we discuss in the next chapter, this result turns out to be a re-discovery of the regularity
lemma first shown in [TTV09], and further explored in [JP14] and [CCL18]. In both cases, we can
prove the relative complexity of h via a boosting-type algorithm, as shown in Algorithm 1. As
we will see throughout the thesis, this type of proof (namely, akin to boosting or gradient descent,
followed by an energy potential decrease argument in the proof) can be used to prove many of the
theorems that we discuss, including, for example, Impagliazzo’s Hardcore Lemma and the Dense
Model Theorem.

In turn, the complexity for building (approximate) multicalibrated predictors is as follows:

Theorem 2.19 (Building MC predictors [HKRR18; DKR+21]). For any family F of functions
f : X → {0, 1}, an arbitrary function g : X → [0, 1], a distribution D on the domain X , and a
parameter ϵ, there exists an (F , ϵ, γ)-multicalibrated predictor h with O(1/ϵ) level sets such that
Ft,q, where t = O(1/(ϵ4γ) · log(|X |/ϵ)) and q = O(1/ϵ2).

Corollary 2.20. If F is a class of distinguishers implemented by size-s circuits, then an (F , ϵ, γ)-
multicalibrated simulator h can be implemented by a circuit of size O(s/(ϵ4γ) · log(|X |/ϵ)).

Figure 2.3: Relationship between the complexity of the distinguishers and the complexity of the predictor.
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The high-level idea of how the algorithm to construct MA and MC predictors is an iterative
algorithm that can be viewed as a variant of gradient descent or boosting and which works as
follows [TTV09; JP14; HKRR18; DKR+21]: we start with a trivial predictor h0 : X → [0, 1], e.g.,
the predictor that maps all x ∈ X to 0. Next we begin an iterative procedure where at each step
t we find a distinguisher in F that “distinguishes” (i.e., for which the MA/MC condition does not
hold) and use that distinguisher to update the predictor. The algorithm halts when there is no
distinguisher that “witnesses” a violation of the MA/MC condition. Then, by definition, we have
built a MA/MC predictor. The task is then to show that the algorithm does indeed terminate, and
we do this by a energy potential argument. That is, we define an energy function as a function of
ht and ht+1 and show that the energy function strictly decreases in each iteration of the algorithm.

More concretely, the complexity stated in Theorems 2.17 and 2.19 can be obtained by roughly
the following boosting-type algorithm. Recall that F ′ corresponds to the closure of F under “nega-
tion” (Remark 2.3).

Algorithm 1 Boosting algorithm for building a MA predictor
1: procedure BuildPredictor(F , g,D, ϵ) ▷ Theorems 2.17, 2.19
2: Initialize h0 := 0 and t = 0.
3: while ∃ft+1 ∈ F ′ such that Ex∼D[ft+1(x) · (g(x)− ht(x))] > ϵ do
4: ht+1 := ht + ϵft+1 ▷ Update h if some f distinguishes
5: t := t+ 1
6: end while
7: return ht
8: end procedure

In order to achieve the claimed relative complexity of h of O(1/ϵ2) in Theorem 2.17, our goal
is to show that Algorithm 1 terminates within 1/ϵ2 steps. To do so, we proceed with an energy-
decrease argument. We remark that this is a recurring type of proof that can be used to show
most of the theorems that we consider in this thesis, as discussed in later chapters. These type of
arguments proceed by defining a so-called “energy function” and then studying how this function
evolves at each time step t. This is a type of proof that has been used to prove many of the theorems
that we consider in this thesis.

Remark 2.21. We remark that Algorithm 1 does not ensure that the simulator h remains bounded
within [0, 1], which is required in the multiaccuracy definition (Definition 2.4). This is why
Lemma 2.22 below states the relative complexity for an MA predictor h : X → R; note that we can
extend the definition of multiaccuracy from [0, 1]-valued functions to real-valued functions. How-
ever, this issue can be circumvented without increasing the relative complexity of the predictor,
hence satisfying the conditions stated in Theorems 2.17, 2.19. This is shown in [TTV09, §3] and
in [DKR+21]. In the latter, this is resolved by projecting onto [0, 1] in each step of the boosting
algorithm. However, the goal of this section is to provide intuition for the relative complexity of a
MA/MC, which Algorithm 1 demonstrates. We defer to the original publications for the technical
details and full analysis.

Given Remark 2.21, we now prove the following:
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Lemma 2.22. Given a family F of functions f : X → {0, 1}, an arbitrary function g : X → [0, 1],
a distribution D on the domain X , and a parameter ϵ, Algorithm 1 returns an (F ′, ϵ)-multiaccurate
predictor h : X → R that can be computed with an oracle-aided circuit with O(1/ϵ2) oracle gates,
where each oracle gate is instantiated with a function from F .

Proof. Given the notation in Algorithm 1, we define the following energy function:

Φt = E
x∼D

[(g(x)− ht(x))
2].

Since h0 is initialized at 0, the initial energy value is

Φ0 = E
x∼D

[(g(x)− 0)2] = E
x∼D

[g(x)2].

Since g : X → [0, 1] by assumption, it follows that Ex∼µ[g(x)
2] ≤ 1, and hence Φ0 ≤ 1.

Next, we analyze the decrease in the potential function when we go from step t to step t+ 1:

Φt − Φt+1 = E
x∼D

[(g(x)− ht(x))
2 − (g(x)− ht(x)− ϵft+1(x))

2],

since by the update step in Algorithm 1, ht+1 = ht + ϵft+1. Then,

Φt − Φt+1 = E
x∼D

[2ϵ · ft+1(x)(g(x)− ht(x))]− E
x∼D

[ϵ2ft+1(x)
2].

Lastly, since by assumption the distinguishing advantage is at least ϵ (given that the algorithm has
not yet terminated), and since f : X → [0, 1], it follows that

E
x∼D

[2ϵ · ft+1(x)(g(x)− ht(x))]− E
x∼D

[ϵ2ft+1(x)
2] ≥ 2ϵ2 − ϵ2 = ϵ2.

Therefore, we have shown that Φ0 ≤ 1, Φt ≥ 0 for all t (since Φt is the expectation of a squared
value), and Φt − Φt+1 ≥ ϵ2, Algorithm 1 must terminate after O(1/ϵ2), as required.

Returning to our discussion of the notion of complexity of h relative to F , Algorithm 1 provides
a very intuitive explanation for the reason why we consider oracle access to F . The key point
is that line 3 in Algorithm 1 assumes that we can find a distinguisher f for which the MA/MC
condition is violated without paying any cost. In other words, this is the step where we assume
oracle access to the functions in F . Therefore, neither the size of F nor the complexity of the
functions f ∈ F plays a role in the complexity of h relative to F . This does play a role in other
notions of complexity, as we briefly discuss in Section 2.4.

An important idea that follows from Algorithm 1 is the fact that the simulator h can be expressed
as a linear combination of the distinguishers f ∈ F . That is:

Remark 2.23 ([TTV09, §4]). The simulator h returned by Algorithm 1 can be written as a sum
h = ϵf1 + · · ·+ ϵfq, where fi ∈ F ′. Hence, we can write

h =
∑
i

cifi, where
∑
i

c2i = qϵ2.
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This remark gives us another way of understanding why h is of low-complexity with respect
to the class F in a way that not require using circuit complexity: namely, we can write h as a
linear combination of the distinguishers f ∈ F . Therefore, h is essentially as easy to compute as
the distinguishers f . Indeed, by the energy-decrease argument above, we know that k ≤ ϵ−2 in
Remark 2.23. This is why this parameter q corresponds to the number of oracle gates in the circuit
that computes h. (Notice that Remark 2.23 applies to the case where h is unbounded.)

In the light of Algorithm 1, we now provide a proof sketch for the parameters stated in Theo-
rems 2.17 and 2.19.

Proof sketch for Theorem 2.17. The proof of Lemma 2.22 bounds the number of oracle calls made
to the distinguishers in F , and hence proves that q = O(1/ϵ2) in Theorem 2.17. That is, the
number of oracle gates in the oracle-aided circuit that computes h (where this circuit is built using
the distinguishers determined in Algorithm 1), is equal to O(1/ϵ2). For parameter t, namely the
total number of gates in the circuit that computes h, we need to account for the rest of arithmetic
operations that are required for computing h. In each of the O(1/ϵ2) iterations in Algorithm 1,
we require a scalar multiplication, a finite-precision addition, and projection onto [0, 1], which can
be handled by O(log(1/ϵ) + log(1/|X |)) gates. The log(1/ϵ) term corresponds to the fact that
we perform computations up to a fixed precision of Θ(ϵ), and the log(1/|X |) term corresponds
to bitlength of the elements in X . Namely, each x ∈ X requires log(1/|X |) bits to represent.
Hence, since there are O(1/ϵ2) iterations in Algorithm 1, the total number of gates in the circuit
computing h is t = O(1/ϵ2 · log(|X |/ϵ)), as stated in Theorem 2.17. For full details on the circuit
implementation, see [DKR+21, §5].

Proof sketch for Theorem 2.19. The same iterative procedure in Algorithm 1 can also be used to
build an approximate multicalibrated predictor (Theorem 2.19), rather than a multiaccurate one.
To do so, it is enough to modify Step 3 in Algorithm 1 in order to check whether some distintin-
guisher distinguishes within each level set of the simulator ht at step t, where we ignore the level
sets that are too small. That is, Step 3 in Algorithm 1 becomes

while ∃ft+1 ∈ F ′ such that Ex∼D[ft+1(x) · (g(x)− ht(x))) | ht(x) = v] > ϵ for any v ∈ Λ[0, 1].

Then, the update step in Step 4 would only apply to the values of x inside the level set Xv =

{x ∈ X | ht(x) = v}, while ht+1(x) = ht(x) for all x ∈ X \ Xv. A formal statement of this
algorithm can be found in [HKRR18, Alg. 3.2], where they show that the total number of iterations
in the energy-decrease argument becomes O(1/(ϵ4γ)), which corresponds to the value of parameter
q in Theorem 2.19. This overhead is due to technical reasons that arise from modifying Step 3 in
Algorithm 1. For parameter t, that is, the total number of gates in the circuit that computes h, the
same analysis as in the proof sketch of Theorem 2.17 applies, and hence the total number of gates in
the circuit computing h is t = O(1/(ϵ4γ) · log(|X |/ϵ)). For full details on the circuit implementation,
see [DKR+21, §5].

2.3 Multicalibrated partitions

While the notion of multicalibration was originally proposed for predictors, throughout this thesis
we will we will consider the notion of multicalibrated partitions, for reasons that will become appar-
ent in Part II. The key idea is that the level sets of a predictor induce a partition of the domain.

20



Then, the level sets of a multicalibrated predictor will give us a multicalibrated partition of the
domain. A similar idea was used in the work on omnipredictors [GKR+21], where the definition of
a multicalibrated partition is given in terms of the covariance on each piece of the partition.Using
the covariance is motivated by the literature on boosting-by-branching programs in learning the-
ory [Kal04; KK09; MM02; KM96]. The notion of an MC partition has also been considered in
[GRSW22].

Remark 2.24. Whenever we use the term “partition” P of the domain X , we always imply that
all the P ∈ P are pairwise disjoint and that their union is the entire domain X .

The following formalizes the notion of a multicalibrated partition. As in the case of an MC
predictor, we need to relax the definition of multicalibration for practical reasons; we choose to use
the approximate MC formulation rather than the MC on average formulation to do so.

Definition 2.25 (Approximate MC partition). Let X be a finite domain, F a class of
functions f : X → [0, 1], g : X → [0, 1] an arbitrary function, D a probability distribution
over X , and ϵ > 0. We say that a partition P of X is (F , ϵ, γ)-approximately multicalibrated
(MC) for g on D if for all f ∈ F and all P ∈ P such that Prx∼D[x ∈ P ] ≥ γ,∣∣∣ E

x∼D|P
[f(x) · (g(x)− vp)]

∣∣∣ ≤ ϵ

where vp := Ex∼D|P P [g(x)] and D|P denotes the conditional distribution D|h(x)∈P .

In the case where D corresponds to the uniform distribution over X , then

Pr
x∼D

[x ∈ P ] =
|P |
|X |

.

That is, in this case, Definition 2.25 should be understood as saying that we do not make any
guarantees about sets that are too small (namely, about sets that occupy less than a γ fraction of
the space).

In order to keep track of the impact of the size of each P ∈ P , we introduce the following
notation:
Definition 2.26. Given a partition P of the domain X , we let ηp = PrD[x ∈ P ] denote the size
parameter of P ∈ P in X . If D corresponds to the uniform distribution over X , then ηp := |P |/|X |.

That is, if P is too small (i.e., if ηp < γ), then Definition 2.25 makes no guarantees about this
set P . This is coherent with our explanation on the size of the level sets in Section 2.1, where we
discussed how the multicalibration notion cannot be satisfied in level sets that are too small.

In the theorems presented in Part II of this thesis, we will see that we will also need to establish
a lower bound on the “imbalancedness” of g on each set P ∈ P . Namely, we will also need to
“throw away” the sets P ∈ P on which g is too “imbalanced”; i.e., such that the expected value
of g on the set is too close to 0 or too close to 1. We will introduce this parameter formally in
Chapter 4, which we denote by kp.

From predictors to partitions. Next, we show how we can build a multicalibrated partition
(satisfying Definition 2.25) from a multicalibrated predictor. The key intuition is the following:
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Every function h induces a partition of the domain X given by the level sets of h. Namely,
{Xv} corresponds to a partition of X , where Xv = {x ∈ X | h(x) = v}.

Figure 2.4: The level sets of a multicalibrated predictor induce a multicalibrated partition of the domain X . In this case,
the partition corresponds to P = {P1, P2, P3, P4} as given by the diagram.

Given this intuition, we now formalize the relationship between a multicalibrated predictor and
a multicalibrated partition, using approximate multicalibration as the appropriate relaxation:

Claim 2.27. Let X be a finite domain, F a collection of functions f : X → [0, 1], g : X → [0, 1]

an arbitrary function, D a probability distribution over X , and ϵ, γ > 0. If h : X → [0, 1] is an
(F , ϵ/2, γ)-approximately multicalibrated predictor for g on D, then the partition P := {Xv}, where
Xv = {x ∈ X | h(x) = v}, is an (F , ϵ, γ)-approximately multicalibrated partition of X for g on D.

Proof. Since h(x) = v for x ∈ Xv, the assumption that h is an (F , ϵ/2, γ)-MC predictor implies
that ∣∣∣ E

x∼D|v
[f(x) · (g(x)− v)]

∣∣∣ ≤ ϵ

2

for f ∈ F and v ∈ Λ[0, 1] for all Xv such that Prx∼D[x ∈ Xv] ≥ γ. We now show that we can
interchange the value v for vp := EXv [g(x)]. Intuitively, since multicalibration requires the expected
values of g and h to be close in expectation, setting the value of h on each level set P = Xv to be
the expected value of g over that level set is “the best” we can do.

Since the constant function 1 is in F (by Remark 2.2) and the MC condition holds for all f ∈ F ,
it follows that ∣∣vp − v

∣∣ = ∣∣∣ E
x∼D|v

[g(x)]− v
∣∣∣ = ∣∣∣ E

x∼D|v
[g(x)− v]

∣∣∣ ≤ ϵ

2

for all Xv such that Prx∼D[x ∈ Xv] ≥ γ. Therefore, v can be at most ϵ/2 away from vp. Hence,
when we interchange h(x) = v for h(x) = vp, we obtain that∣∣∣ E

x∼D|v
[f(x) · (g(x)− vp)]

∣∣∣ ≤ ∣∣∣ E
x∼D|v

[f(x) · (g(x)− v)]
∣∣∣+ E

x∼D|v

∣∣f(x) · (v − vp)
∣∣ ≤ ϵ
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for all Xv such that Prx∼D[x ∈ Xv] ≥ γ. Therefore, we have concluded that∣∣∣ E
x∼D|P

[f(x) · (g(x)− vp)]
∣∣∣ ≤ ϵ

for all Xv such that Prx∼D[x ∈ Xv] ≥ γ. By Definition 2.25 this means that P := {Xv} is an
(F , ϵ, γ)-approximately multicalibrated partition of X for g on D, as we wanted to show.

Having introduced the notion of a multicalibrated partition, we know study the notion of the
complexity of a partition, similar to how we considered the complexity of a multicalibrated predictor
in Section 2.2.

Building on Definition 2.14, we introduce the class Ft,q,k of partitions:

Complexity of a partition. As we started to develop in Section 2.1, a key property of a mul-
ticalibrated partition is that it is a low-complexity partition of the domain X . We now formalize
this idea.
Definition 2.28. Given a set of functions F = {f} on a finite domain X , Ft,q,k denotes the class
of partitions P of X into k pieces P = ({P1, . . . , Pk}) such that there exists fm ∈ Ft,q satisfying
Pi = f−1

m (i) for all i ∈ [k]. (Hence, fm : X → [k].)
We note that by writing ({P1, . . . , Pk}) we indicate that this is an ordered partition.
The condition Pi = f−1(i) stated in Definition 2.28 ensures that we are always able to know to

which level set each x ∈ X belongs to by performing an oracle call to a function in Ft,q. Intuitively,
we are enumerating each P ∈ P with an integer in [k], and then Definition 2.28 requires the
existence of a function in Ft,q that we use to query in which P each x ∈ X belongs to. We call this
f the partition membership function. Moreover, this f is constant on each P ∈ P .

Figure 2.5: Illustration of the partition membership function. For example, if x ∈ P3, then fm(x) = 3. Thus, P3 = f−1
m (3).

Having formalized the complexity class Ft,q,k of partitions, we can finally state the theorem
that will be the backbone of all our results in Part II:

Theorem 2.29. Let X be a finite domain, F a class of functions f : X → [0, 1], g : X → [0, 1]

an arbitrary function, D a probability distribution over X , and ϵ, γ > 0. Then there exists an
(F , ϵ, γ)-approximately multicalibrated partition P of X for g on D such that P ∈ Ft,q,k, where

1. t = O(1/(ϵ4γ) · log(|X |/ϵ)),

2. q = O(1/ϵ),
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3. k = O(1/ϵ).

Proof. We begin by invoking Theorem 2.19 with ϵ/2 to obtain an (F , ϵ/2, γ)-approximately MC
predictor h : X → [0, 1] that satisfies h ∈ Ft,q with t = O(1/(ϵ4γ) · log(|X |/ϵ)) and q = O(1/ϵ).
By Claim 2.27, this yields an (F , ϵ, γ)-approximately MC partition P of X . By Claim 2.11 and
Remark 2.12, |P| = O(1/ϵ) given that the predictor h has O(1/ϵ) level sets, and by the construction
in the proof of Claim 2.27, the level sets of h and the P ∈ P are in 1-to-1 correspondence. Hence,
k = O(1/ϵ). Lastly, given the 1-to-1 correspondence between the level sets of h and the sets P ∈ P ,
it is clear that there exists a function fm ∈ Ft,q satisfying Pi = f−1

m (i) for all i ∈ [k]. We construct
this fm by using the predictor h, which we know belongs to the complexity class Ft,q. Namely, we
define fm as follows: let v1, . . . , vk be an arbitrary ordering of the k output values of h. Then, fm
maps each vi to its index i in this ordering. We claim that fm ∈ Ft,q. Indeed, let Ch be the oracle-
aided circuit that computes h. It is enough that we hard-wire the values i ∈ [k] as determined by
the mapping that we just defined, which we describe using a look-up table. Hence, the circuit that
computes fm only has an additional k number of gates [Bar22, §9.1.1.], but since k = O(1/ϵ) it
follows that fm ∈ Ft,q, since the term O(1/ϵ) is absorbed by the parameter t.

2.4 Bounding the computational complexity

While for the purposes of this thesis we are only concerned with the complexity of h relative to F
(i.e., as defined in Definition 2.13), in this section we clarify how this relates to other notions of
complexity about h present in the literature. In other words, in Algorithm 1 we are assuming that
Step 3 in the pseudocode (namely, searching over the space F of distinguishers to find some f for
which the MA/MC condition is violated) takes constant-time. While this is the right approach when
considering the complexity of h with respect to F , we cannot ignore this runtime when learning
such a predictor h in practice.

The original paper of [HKRR18], besides considering the complexity of h relative to F , also
considers two other notions of complexity: one is the complexity of learning, and the other is the
sample complexity. The notion of relative complexity considered in Theorem 2.19 only considers
that size of the circuit that implements the simulator h. But from the perspective of learning
theory, one should also consider how such a circuit can be learnt. In that case, as one might expect,
[HKRR18, Section 3] show that the running time scales linearly with |F| (i.e., the time to iterate
through each f ∈ F) and with t, where t is an upper bound on the running time required to
evaluate any f ∈ F .

Hébert-Johnson et al. then study whether we can improve the linear dependence on |F| by
exploiting structure within the collection of distinguishers F . However, [HKRR18] show that weak
agnostic learning of a class F is equivalent to learning an (ϵ,F)-MC predictor up to polynomial
factors; i.e., they show that the two problems reduce to each other. Therefore, in the positive
direction, if there is an efficient (weak) agnostic learner for a class F , then we can achieve efficient
multicalibration with respect to F . In the negative direction, this also means that learning an MC
predictor for F is as hard as weak agnostic learning on F . In particular, agnostic learning is known
to be a notoriously hard problem in the learning theory literature (see, e.g., [KMV08; Fel09]).

In the context of learning theory, the predictor h should be learnt from labeled samples. In
other words, it is not feasible in this context to assume full access to the domain X , and instead the
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learning algorithm only receives samples (x, g(x)). This makes sense, for example, in the context
of machine learning, where a predictor receives a small set of labeled samples. The question then
becomes: what is the least number of samples that are required to learn a multicalibrated predictor?
This question is investigated thoroughly in [HKRR18].

However, for our purposes in this thesis, we are only concerned with the relative complexity of
h with respect to F , and we do not further discuss the computational complexity of learning.

2.5 Outcome Indistinguishability

To finish this chapter, we briefly summarize another important perspective on the notions of mul-
tiaccuracy and multicalibration. Recently, Dwork et al. established the framework of outcome
indistinguishability, which studies questions in algorithmic fairness drawing on an understanding
of computational indistinguishability developed in complexity theory and cryptography [DKR+21].
Dwork et al. inquire the meaning behind the concept of individual probabilities in algorithmic fair-
ness. Namely, what does it mean that someone has a probability of a 5-year survival after a certain
diagnosis, given that this is a non-repeatable event? Understanding this notion seems imperative
in the case of algorithmic fairness: in this setting, the simulator h is mapping individuals in X to
a score in [0, 1], which is what is understood as an individual probability for some event.

Inspired by the literature on statistical forecasting [Daw85], Dwork et al. recently proposed
the notion of outcome indistinguishability (OI): predictors that are OI yield a generative model for
outcomes that cannot be efficiently refuted on the basis of the real-life observations produced by
Nature. That is, the goal in the OI framework is to produce predictions that are indistinguishable
from the ground truth. As it is the case in multiaccuracy and multicalibration, this notion captured
through a class of distinguishers F and requiring indistinguishability between two predictors with
respect to F . They provide a hierarchy of four definitions for a predictor, based on how much
access the distinguishers have to the predictor (in this setting, we think of the distinguishers as a
board that is examining how good a predictor h is): no-access OI, sample-access OI, oracle-access
OI, and code-access OI. They then show that their notion of no-access OI essentially corresponds
to the notion of multiaccuracy, while their notion of sample-access OI essentially corresponds to
the notion of multicalibration.

The OI framework and its connections to multiaccuracy and multicalibration has proven to
be very useful in recent work, especially in the setting of learning theory and loss minimization
[GHK+22; GHK+23; GKR23]. In particular, these works try to reconcile three different perspectives
on the goal of learning: loss minimization, fairness (using MA and MC), and indistinguishability
(using the OI framework).
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3
Regularity Lemmas

Our result [...] appears to be the general result underlying the known connections
between “regularity” results in graph theory, “decomposition” results in additive
combinatorics, and the Hardcore Lemma in complexity theory.

Trevisan et al. [TTV09]

While the notion of multiaccuracy, and the proof that we can efficiently build a multiaccu-
rate predictor using a boosting-type algorithm, recently emerged from the new field of algorithmic
fairness, this notion turns out to be intimately related —in fact, equivalent— to the older regu-
larity lemma of Trevisan, Tulsiani, and Vadhan [TTV09]. The regularity lemma of Trevisan et al.
was published about 10 years before Hébert-Johnson et al. proposed the notion of multiaccuracy
[HKRR18], and, crucially, has several deep connections to fundamental theorems in theoretical com-
puter science and mathematics, as we later develop in this chapter. These connections are what
establish the research question that we investigate in this thesis: Given that multicalibration is a
stronger notion than multicaccuracy, how do these fundamental theorems change when we consider
them through multicalibration rather than through multiaccuracy?

Formally, Trevisan et al. proved the following theorem:

Theorem 3.1 ([TTV09]). Let X be a finite set, D a probability distribution over X , F be a
collection of functions f : X → [0, 1], ϵ > 0 an approximation parameter, and g : X → [0, 1] an
arbitrary bounded function.

Then there is a function h : X → [0, 1] satisfying Eµ[h] = Eµ[g] that is

1. efficient relative to F : h has complexity ϵ−O(1) relative to F , and

2. indistinguishable from g: for every f ∈ F , we have∣∣Ex∼D[f(x) · (g(x)− h(x))]
∣∣ ≤ ϵ.

The notion of indistinguishability from g corresponds exactly to h being (F , ϵ)-multiaccurate,
as we noted in Chapter 2.
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3.1 Complexity of the simulator

After the work of Trevisan et al. [TTV09], subsequent papers proved variants of the regularity
lemma, mostly concerned with improving the efficiency of the simulator h with respect to the
distinguishers f [JP14; CCL18; Skó15; Sko16; Skó16; VZ13]. The formulation used by Jetchev and
Pietrzak [JP14] is suitable for cryptographic applications: indeed, their motivation for considering
the regularity lemma is due to its applications to leakage-resilient cryptosystems. For this reason,
[JP14] and [CCL18] refer to the regularity lemma as the leakage simulation lemma.

All of the proofs for the regularity lemma and its variations fall into two main proof techniques: a
boosting proof via an energy-decrease argument (as discussed in Section 2.2, or a proof based on the
min-max theorem, which we summarize in the next section. The min-max-type proofs also include
several variations, such as the multiplicative weight update (MWU) method incorporating with
KL-projections [VZ13]. The different proofs and the differences between parameters is discussed in
the work of Chen et al. [CCL18].

Lower bounds. In [CCL18], they prove that the simulator must have a relative complexity of
q = Ω(1/ϵ−2) to the distinguisher family by establishing a black-box lower bound, where a simulator
can only use the distinguishers in a black-box way. Given that the notion of multiaccuracy in
algorithmic fairness corresponds to the regularity lemma, as we have just established, this lower
bound shown in [CCL18] is also applicable to the construction of multiaccurate predictors, and it
is thus also applicable to the construction of multicalibrated predictors, given that MA is a strictly
weaker notion than MC.

3.2 Min-max proof

Another way to prove Theorem 3.1, as formalized in [TTV09], is by using Von Neumann’s min-
max theorem for two-player zero-sum games. The min-max theorem is also known as the linear
programming duality or the finite-dimensional Hahn-Banach Theorem, and it has become a widely-
used tool in theoretical computer science, and particularly in game theory [FS99]. We give a brief
overview of how this argument works, without going into the technical details.

The min-max theorem applies to the setting of zero-sum games between two players. For every
mixed strategy V (as a distribution over their strategy space V) for Player 1, Player 2 has a response
W ∈ W that guarantees E[F (V,W )] ≥ 0, where F can be an arbitrary function and is called the
payoff. The min-max theorem states that there must exist a Player 2’s mixed strategy W ∗ that
guarantees E[F (V,W ∗)] ≥ 0 for all strategies V ∈ V of Player 1. In other words, in any finite
two-player zero-sum game, if for every distribution over the actions of Player 1 there exists some
action for Player 2 that guarantees him an expected utility of v, then there exists some (universal)
distribution of actions for Player 2 such that no matter what action Player 1 picks, Player 2 is
still guaranteed an expected utility of v [VZ13]. The min-max theorem can be used to prove
Impagliazzo’s Hardcore Lemma [Imp95] and the Dense Model Theorem [RTTV08], among many
other results.

In the setting of regularity/multiaccuracy, the two-player zero-sum game is defined as follows.
Let H be the set of all bounded functions h : X → [−1, 1] that have complexity at most t with
respect to Ft, where Ft denotes the class of functions that have complexity at most t with respect
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to F ′, which denotes the closure of F under negation; i.e., F ′ := {f,−f | f ∈ F}. The parameter
t is set accordingly in the formal proof in [TTV09]. Then, the key idea is to set up the following
game:

1. Player 1 picks a simulator h from H.

2. Player 2 picks a distinguisher f from F ′.

The payoff function is defined as

E
x∼D

[f(x)g(x)− f(x)h(x)].

Then, by applying the min-max theorem, [TTV09] show that there exists some h ∈ CH(H), where
CH(H) denotes the set of convex combinations of functions in H, such that for all f ∈ F ′,

E
x∼µ

[f(x) · (g(x)− h(x))] ≤ ϵ/2.

Trevisan et al. then use the function h to build the simulator h that proves the regularity lemma
(Theorem 3.1). The function h alone is not enough to prove it because h ∈ CH(H), and the convex
combination may not have low-complexity.

Chen et al. [CCL18] and Vadhan and Zheng [VZ13] also provide a proof of the regularity lemma
using the min-max theorem.

3.3 Structure and randomness in combinatorics

The regularity lemma of Trevisan et al. was being independently used in the field of combinatorics,
where results of this sort are referred to as decomposition theorems, a term coined by Timothy Gow-
ers [Gow10]. We believe that their casting of the regularity lemma provides a useful perspective for
understanding the underlying principle behind the regularity lemma and its variants. The key idea
behind these type of statements, as described by Terence Tao, is the following: In order to deal
with a large object of unspecficied or unusable structure, we decompose it into more usable com-
ponents [Tao07]. Usually, we decompose the object into a structured component, a pseudorandom
component, and possibly an error term:

Object = Structured component + Pseudorandom component (+ error)

Tao calls this fundamental phenomenon a dichotomy between structure and pseudorandomness.
Some examples of structured objects include complete bipartite graphs, functions with some peri-
odicity, or objects with some algebraic structure. On the other hand, pseudorandom objects mimic
the behaviour of random objects in some sense. The contribution of the pseudorandom and error
components is shown to be negligible [Tao07].

In this light, the regularity lemma (Theorem 3.1) can be re-stated as follows [TTV09, Remark
1.4]: Given an arbitrary function g, we can find two functions h1 : X → [0, 1] and h2 : X → [−1, 1]
such that g = h1 + h2, where h1, h2 satisfy that

1. h1 has low complexity, and
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2. h2 is nearly orthogonal to all f ∈ F ; i.e., |⟨h2, f⟩| ≤ ϵ, where the inner product is defined as

⟨f, g⟩ := E
x∼D

[f(x)g(x)].

As noted by [TTV09], this condition can be made nicer by introducing the norm

||g||F = min
f∈F

∣∣ E
x∼D

[f(x)g(x)]
∣∣,

in which case this Condition 2 becomes ||h2||F ≤ ϵ.

Then, we see how the Trevisan et al. regularity lemma fits exactly into Tao’s framework: namely,
the “object” corresponds to g (which can be arbitrarily complex), the “structured component” cor-
responds to h1 := h (since h has low complexity), and the “pseudorandom component” corresponds
to h2 := g − h.

Hence we can understand the regularity lemma as as part of this broader framework, where
object is a superposition of a structured object and a pseudorandom error. For these type of
structure theorems, the core idea behind their proofs is to use an iterative procedure which is based
on this dichotomy. This iterative procedure is then shown to terminate using a potential energy
argument. Indeed, this is exactly how we showed the multiaccuracy theorem in Chapter 2 (which
corresponds to the regularity theorem). We can understand this iterative procedure as follows: At
each iteration, if an object does not behave pseudorandomly, then it correlates with a nontrivial
structured object, and we use this correlation to make the update. We continue until the initial
object behaves pseudorandomly.

Other examples of this dichotomy include [Tao05; Tao07]: The spectral decomposition of a
self-adjoint operator, Szemerédi’s graph regularity lemma, orthogonal decomposition in Hilbert
spaces, structure in Reed-Muller codes, among others. This dichotomy is also the key behind
some fundamental results in additive combinatorics, including Szemerédi’s theorem on arithmetic
progressions and the Dense Model Theorem. The Dense Model Theorem in turn helped establish
the famous Green-Tao theorem, which states that the primes contain arbitrarily long arithmetic
progressions [GT08].

We briefly describe one of these examples; namely, orthogonal decomposition in Hilbert spaces.
In the next section, we turn to Szemerédi’s graph regularity lemma, which is one of the fundamental
implications of the regularity lemma (Theorem 3.1).

3.3.1 An example: Orthogonal decomposition in Hilbert spaces

An example of the structure-pseudoranomdness dichotomy is as follows [Tao07]: we can show that
we can decompose a vector f in a Hilbert space into its orthogonal projection fstr plus its orthogonal
projection fpsd onto the orthogonal complement V ⊥ of V :

f = fstr + fpsd.

We now formalize this idea. Let H denote a real finite-dimensional Hilbert space, and let S ⊆ H

denote a known set S of “basic structured objects”. We think of the dimension of H as being very
large. We assume that ||v||H ≤ 1 for all v ∈ S. The idea is that we want to efficiently represent
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elements of H using S. Namely, vectors in S as seen as structured, whereas vectors that have small
inner product to all vectors in S are seen as pseudorandom.
Definition 3.2. Given f ∈ H, we say that a vector f is (M,K)-structured for some M,K > 0 if
there exists a decomposition

f =
∑

1≤i≤M

civi

with vi ∈ S and ci ∈ [−K,K] for all 1 ≤ i ≤M .
Definition 3.3. We say that f is ϵ-pseudorandom for some ϵ > 0 if |⟨f, v⟩H | ≤ ϵ for all v ∈ S.

We can now state the following structure theorem:

Theorem 3.4 (Non-orthogonal weak structure theorem [Tao07, Corollary 2.5]). Let H,S be as
above. Let f ∈ H be such that ||f ||H ≤ 1, and let 0 < ϵ ≤ 1. Then there exists a decomposition

f = fstr + fpsd,

where fstr is (1/ϵ2, 1/ϵ)-structured and fpsd is ϵ-pseudorandom.

The proof follows an energy decrease argument using Cauchy-Schwarz and Pythagoras’ theorem.
At each step, ||fpsd||2H decreases by at least ϵ2, and thus the algorithm terminates after at most
1/ϵ2 such iterations.

3.4 Szemerédi regularity lemma

After having described the general framework surrounding Theorem 3.1, we now turn to Szemerédi’s
regularity lemma in graph theory, which is another canonical example of the dichotomy between
structure and randomness. On a high-level, Szemerédi’s regularity lemma states that large dense
graphs can be decomposed into low-complexity partitions and regular graphs between partition
classes. In Tao’s framework, the “object” here corresponds to a graph which can be arbitrarily
large and dense (hence complex), the “structured component” corresponds to the low-complexity
partition classes, and the “pseudorandom component” corresponds to the regular graphs between
partition classes.

There are two versions of this result: the original and stronger result, which is called Szemerédi
regularity lemma, and the weaker version shown by Frieze and Kannan, which obtains better param-
eters for algorithmic applications [FK99]. In this section, we describe this fundamental regularity
result in graph theory for two reasons: first, it provides another illustration of the type of decompo-
sition theorems that we are describing in this chapter. Second, and more importantly, Trevisan et
al. show that their regularity lemma (Theorem 3.1) yields the weak Szemerédi regularity lemma of
Frieze and Kannan as a corollary. In this section, we will unpack this implication, and show how we
can use a multiaccurate predictor to prove the Frieze-Kannan regularity lemma. This connection
was recently explored in Dwork et al. [DLLT23] in the context of algorithmic fairness and in Skórski
[Skó17] in the context of low-complexity approximations in cryptography. They both show, in dif-
ferent ways and using different terminology, that a multicalibrated predictor can be used to prove a
stronger variant of the regularity of Frieze and Kannan. Dwork et al. call this notion intermediate
regularity [DLLT23].
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Describing these implications will help set-up the type of analysis that we will be repeatedly
performing in Part II of this thesis in order to obtain our results. Namely, we begin by taking the
regularity lemma of Trevisan et al. (Theorem 3.1) and we “translate” it to some precise context;
in this case, in the area of graph theory. This entails instantiating the domain X , the class of dis-
tinguishers F , and function g accordingly. Then, by applying Theorem 3.1 (i.e., the multiaccuracy
theorem/regularity lemma), we obtain a multiaccurate predictor h for g, which allows us to prove
some other fundamental theorem. Having understood this proof, the next step is then to reproduce
this same procedure but using the multicalibrated theorem instead. Then, by reproducing the first
proof obtained with a multiaccurate predictor but using a multicalibrated predictor instead, we are
able to obtain a stronger and more general version of the original fundamental theorem. In the
case of graph theory, multicalibration allows us to obtain a stronger version of the Frieze-Kannan
regularity lemma.

3.4.1 Frieze-Kannan regularity

Definition 3.5 (Density). Let G = (V,E) a graph, where V denotes the vertex set and E ⊆ V ×V

denotes the edge set. For disjoint sets S, T ⊆ V , let eG(S, T ) denote the number of edges between
S and T . The density dG(S, T ) is defined as

dG(S, T ) =
eG(S, T )

|S||T |
.

We will drop the subscripts of eG and dD if it is clear to which graph G we are referring to.
The following definition requires a global regularity guarantee on the partition of vertices of a

graph:
Definition 3.6 (Frieze-Kannan ϵ-regularity). A partition P = {V1, . . . , Vm} of the vertices V of a
graph G satisfies Frieze-Kannan ϵ-regularity if

|eG(S, T )−
∑

j,k∈[m]

dG(Vj , Vk)|S ∩ Vj ||T ∩ Vk|| ≤ ϵ|V |2

for all disjoint S, T ⊆ V .
Frieze and Kannan showed that the above definition is indeed achievable for any graph G [FK99]:

Theorem 3.7 (Frieze-Kannan Regularity Lemma [Skó17, Thm. 4]). For every graph G there exists
a partition V1, . . . , Vk of the vertices V and real numbers di,j such that∣∣∣∑

i,j

eG(S ∩ Vi, T ∩ Vj)−
∑
i,j

di,j |S ∩ Vi||T ∩ Vj |
∣∣∣ ≤ ϵ|V |2

for all S, T ⊆ V . Moreover, the partition is generated by O(ϵ−2) subsets of V . In particular, k is
at most 2O(ϵ−2).

3.4.2 Szemerédi regularity

A stronger regularity condition on a partition of the vertices is the following one. First, we say that
a pair (X,Y ) is regular if the density is approximately preserved:
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Definition 3.8 (ϵ-regular). We say that a disjoint pair X,Y ⊆ V in a graph G is ϵ-regular if for
every S ⊆ X such that |S| ≥ ϵ|X| and T ⊆ Y such that |T | ≥ ϵ|Y | we have

|dG(S, T )− dG(X,Y )| ≤ ϵ.

That is, a disjoint pair (X,Y ) is ϵ-regular if it is distributed pseudorandomly. The natural
question is then: Can we find a partition of the vertices of the graph such that most parts are
ϵ-regular? Formally:
Definition 3.9 (Szemerédi ϵ-regularity). A partition P = {V1, . . . , Vm} of the set of vertices V of
a graph G satisfies Szemerédi ϵ-regularity if∑

j,k∈[m]
(Vj , Vk) not ϵ-regular

|Vj ||Vk| ≤ ϵ|V |2.

Even for this stronger notion, it is also possible to achieve it (although with worse parameters
than in the case of Frieze-Kannan, as one would expect):

Theorem 3.10 (Szemerédi Regularity Lemma, variant 1 [Skó17, Thm. 1]). For every graph G,
there exists a partition V1, . . . , Vk of vertices such that for all up to ϵ-fraction of the pairs (i, j),∣∣∣e(GS, T )− dG(Vi, Vj)|S||T |

∣∣∣ ≤ ϵ|Vi||Vj |

for any S ⊆ Vi, T ⊆ Vj such that |S| ≥ ϵ|Vi|, |T | ≥ ϵ|Vj |. Moreover, the size of the partition is at
most a power of twos of height O(ϵ−2).

Szemerédi’s Regularity Lemma can be shown using the same type of iterative argument that
we have described in Chapters 2 and 3: Namely, we begin with an arbitrary partition of the graph.
While the partition is not ϵ-regular, we find the subsets S and T which “witness” this irregularity,
and we refine the partition using these subsets. Then, we use an potential energy decrease argument
to argue that this procedure terminates after some bounded number of steps. We see that this
corresponds exactly to Algorithm 1 in Chapter 2 and the subsequent analysis showing how to
build a multiaccurate predictor. Namely, we begin with a trivial predictor h. While the graph
is not multiaccurate, we find some distinguisher who “distinguishes”, and we update h using this
distinguisher. Then, we also use a potential energy decrease argument (see proof of Theorem 2.17).

For many years, it was not known whether the tower-type bound stated in Theorem 3.10 (namely,
a power of twos of height poly(1/ϵ)) was unavoidable. In 1997, Timothy Gowers showed that this
is indeed the case [Gow97].

3.5 Multiaccuracy corresponds to Frieze-Kannan weak regularity

The fact that multiaccuracy (equivalently, the regularity lemma of [TTV09]) corresponds to Frieze-
Kannan regularity was originally observed in [TTV09], and further explored in [Skó17; DLLT23]. To
show this correspondence, given a graph G = (V,E) we instantiate the regularity lemma of Trevisan
et al. (Theorem 3.1) with the appropriate domain X , class of distinguishers F , and function g:

33



• We define the domain X as the set of edges in a complete graph of V . That is,

X = {(a, b) | a, b ∈ V }.

• In this way, we can see the graph G as defining a boolean function g : X → {0, 1}.

• Lastly, the set of distinguishers F is instantiated as follows. For every two disjoint set of
vertices S, T , we let the function fS,T : X → {0, 1} be defined as the characteristic function of
the set of edges having one endpoint in S and one in T . Then F contains all fS,T for every
S, T ⊆ V .

In order to understand this instantiation of X , g, and F , we provide the following example.
Consider the following graph G:

Figure 3.1: Example graph to illustrate the correspondence between Frieze-Kannan regularity and multiaccuracy.

In this example, we see that X corresponds to

X = {(a, b), (a, c), (a, d), (a, e), (a, f), (b, c), (b, d), (b, e), (b, f), (c, d), (c, e), (c, f), (d, e), (d, f), (e, f)}.

The function g returns 1 in the following cases:

g((a, b)) = 1, g((c, e)) = 1, g((d, f)) = 1,

and returns 0 for the rest of values in X . Essentially, if we consider the adjacency matrix of G, the
function g returns 1 on a pair of vertices if and only the corresponding value of that pair in the
adjacency matrix of G corresponds to 1.

Lastly, given the sets S and T of vertices illustrated in Figure 3.1, it follows that f returns 1 in
the following cases:

fS,T ((a, b)) = 1, fS,T ((a, d)) = 1, fS,T ((a, f)) = 1,

fS,T ((c, b)) = 1, fS,T ((c, d)) = 1, fS,T ((c, f)) = 1,

fS,T ((e, b)) = 1, fS,T ((e, d)) = 1, fS,T ((e, f)) = 1,
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and returns 0 for the other values in X . That is, fS,T only returns 1 on an edge that crosses between
S and T . (This edge might not actually appear in the graph G, since fS,T does not depend on g.)

By applying the multiaccuracy theorem to X , g, and F (Theorem 2.17), we obtain a simulator
h : X → [0, 1] that satisfies the MA guarantee. We now justify that we can see h as a weighted
graph H that approximates G as required by the Frieze-Kannan Weak Regularity Lemma [TTV09].
That is, we can see h as defining a sort of adjacency matrix for the graph G, except the matrix
values are allowed to be real-valued, unlike in the case of proper adjacency matrices, which only
take boolean values.

By the MA condition, we know that for all fS,T ∈ F ,

|E[fS,T (x)g(x)]− E[fS,T (x)h(x)]| ≤ ϵ.

In order to ease notation, we state the condition for x ∈ E, unlike for (a, b) ∈ E where a, b ∈ V , as
we did it in the example above. As we just illustrated, fS,T is a “cut function”: it only return 1
when evaluated on an edge that crosses the cut (with respect to the vertex sets S and T ). By the
definition of g, we also know that g(x) = 1 if and only if x ∈ E; that is, if x is an edge in G.

Let P = {V1, . . . , Vm} be the partition induced by the multiaccurate predictor h. Namely, we
construct this partition from the function h by taking all possible intersections of the sets Si, Ti

and their complements, such that h is constant on the edges between each pair of parts. This
explains why the number of pieces in the partition stated in the Frieze-Kannan regularity lemma
(Theorem 3.7) is 2O(ϵ−2). Namely, by the Trevisan et al. regularity lemma (Theorem 3.1), we know
that h can be described as a function of at most k = poly(1/ϵ) functions fSi,Ti . Hence, by the
construction of P from h that we just described, it follows that |P| ≤ 22k.

Then, by the definitions of g, fS,T , and h, it follows that

E[fS,T (x)g(x)] =
∑

j,k∈[m] e(S ∩ Vj , T ∩ Vk)

|V |2
,

E[fS,T (x)h(x)] =
∑

j,k∈[m] d(Vj , Vk)|S ∩ Vj ||T ∩ Vk|
|V |2

.

Then, by the MA guarantee, it follows that∣∣∣e(S, T )− ∑
j,k∈[m]

d(Vj , Vj)|S ∩ Vj ||T ∩ Vk|
∣∣∣ ≤ ϵ|V |2,

given that
∑

j,k∈[m] e(S ∩Vj , T ∩Vk) = e(S, T ). This corresponds exactly to the definition of Frieze-
Kannan ϵ-regularity, and hence we have proved the Frieze-Kannan regularity lemma (Theorem 3.7)
using a multiaccurate predictor h.

Using multicalibration instead of multiaccuracy. Having established the equivalence between
multiaccuracy and Frieze-Kannan regularity, Dwork et al. study what type of graph regularity
lemma we would obtain if we started with a multicalibrated predictor instead. Namely, they
show that a variant of approximate multicalibration (which they define using the framework of
outcome indistinguishability) gives rise to a graph partition that satisfies what they call intermediate
regularity. Formally, this term is defined as follows:
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Definition 3.11 ([DLLT23, Def. 6.6]). Let X,Y, S, T ⊆ V in a graph G. We say that the pair
(X,Y ) is (S, T, ϵ)-regular if

|dG(S ∩X,T ∩ Y )− dG(X,Y )| ≤ ϵ.

Definition 3.12 (Intermediate ϵ-regularity [DLLT23, Def. 6.7]). A partition P = {V1, . . . , Vm} of
the set of vertices V of a graph G satisfies intermediate ϵ-regularity if∑

j,k∈[m]
(Vj , Vk) not (S, T, ϵ)-regular

|Vj ||Vk| ≤ ϵ|V |2.

The notion of intermediate regularity is strictly between the Frieze-Kannan regularity notion
and Szemerédi’s regularity notion. In [DLLT23], following a similar approach as [Skó17], they also
show that we can prove the Szemerédi regularity lemma using a stronger multicalibration notion
than approximate multicalibration plus some extra structural conditions on the set of vertices.
In particular, this extra structural condition is stringent enough that this equivalence does not
contradict Gower’s result on the lower bound on the size of a partition that satisfies Szemerédi
regularity (namely, a power of twos of height O(ϵ−2)).

3.6 Implications of a multiaccurate predictor

In Section 3.4, we have seen how we can prove the Frieze-Kannan regularity lemma in graph theory
using a multiaccurate predictor. But this is not the only fundamental theorem that can be derived
from the regularity lemma of Trevisan et al. (Theorem 3.1): There are many other fundamental
theorems in various areas of theoretical computer science that can be derived as corollaries of the
regularity lemma. Some of these fundamental theorems include:

Impagliazzo’s Hardcore Lemma (IHCL). Impagliazzo’s Hardcore Lemma (IHCL) is a funda-
mental result in complexity theory that was first proved in 1995 [Imp95]. Informally, it states that
if a function is somewhat hard to compute on average by a family of boolean functions (what we
have been calling the distinguishers), then there is a large-enough subset of the inputs (called the
“hardcore set”) for which the function is very hard to compute, in the sense that g behaves like a
random function in the eyes of the distinguishers.

Characterizations of pseudoentropy. Vadhan and Zheng showed that we can characterize pseu-
doentropy, which is a notion from information theory, in terms of hardness of sampling [VZ13]. This
characterization yields a simpler construction of pseudorandom generators from one-way functions,
among other applications.

The Dense Model Theorem (DMT). This is a result from additive combinatorics which states
the following [RTTV08; GT08]. If we have a pseudorandom set R in a domain X (which can be
very sparse) and a set D contained in R such that D occupies a large enough fraction of the space
inside R, then there exists a model set M in X such that M occupies a large enough fraction
of the space inside X and such that R and M are indistinguishable with respect to the class of
distinguishers F . The Dense Model Theorem is one of the crucial proof components used in Green
and Tao’s famous result that there exist arbitrarily long arithmetic progressions of primes [GT08].
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Other implications of the regularity lemma of Trevisan et al. include applications in leakage
resilient cryptopgrahy [JP14; CCL18], weak notions of zero-knowledge [CLP15], Yao’s XOR theorem
[GNW11], chain rules for computational entropy [GW11; JP14], and Chang’s inequality in Fourier
analysis of boolean functions [IMR14].

Our research question. Given the correspondence between building a multiaccurate predictor
and the regularity simulation lemma (i.e., between Theorem 2.17 and Theorem 3.1), a natural
question arises: How do all these implications generalize when we start from a multicalibrated
predictor instead of from a multiaccurate predictor? This should yield more general and stronger
theorems, given that multicalibration is a stronger notion that multiaccuracy. In Section 3.4, we
saw the first instance of this approach being successful; namely, multicalibration yields a stronger
notion of graph regularity than that of Frieze-Kannan. In this thesis, we focus on three of the
implications the regularity lemma: Impagliazzo’s Hardcore Lemma (Chapter 4, characterizations
of pseudoentropy (Chapter 5), and the Dense Model Theorem (Chapter 6). We find a stronger,
more general theorem in all three cases; moreover, the three of them present a parallel structure
(which we summarize in Chapter 7). Therefore, by using the tools that have recently been developed
in the field of algorithmic fairness (namely, the construction of multicalibration) and casting them
back to the field of computational complexity, we are able to obtain stronger and more general
versions of fundamental theorems that have been well-known for years.

Throughout the thesis, we will use ++ to denote the strengthened and more general versions
of all theorems.

Figure 3.2: Diagram representing the research question underlying this thesis.
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4
Impagliazzo Hardcore Lemma

Consider a decision problem that cannot be 1− δ approximated by circuits of a given
size in the sense that any such circuit fails to give the correct answer on at least a δ

fraction of instances. We show that for any such problem there is a specific
“hard-core” set of inputs which is at least a δ fraction of all inputs and on which no
circuit of a slightly smaller size can get even a small advantage over a random guess.

Russell Impagliazzo [Imp95]

Impagliazzo’s Hardcore Lemma (IHCL) is a fundamental result in complexity theory that
was first proved in 1995 [Imp95]. Informally, it states that if a function is somewhat hard to compute
on average by a family of boolean functions (what we have been calling the distinguishers), then
there is a large-enough subset of the inputs (called the “hardcore set”) for which the function is very
hard to compute, in the sense that g behaves like a random function in the eyes of the distinguishers.
When we state the theorem formally, we will see that the “somewhat hard” assumption and the
“very hard” conclusion are with respect to different families of distinguishers. In particular, the
former family is an enlarged class of distinguishers than the latter family. In the case of IHCL, the
distinguishers will correspond to circuits.

This is a type of hardness amplification from computational complexity [KS03]: IHCL is stating
that from a boolean function g which is “mildly inapproximable” by circuits of some size, we can
find a set of the inputs where g is “highly inapproximable” by circuits of slightly smaller size. We
think of “mildly inapproximable” as saying that no circuit agrees with g on a fraction of inputs
very close to 1, whereas we think of “highly inapproximable” as saying that no circuit can agree
with g on a fraction of inputs larger than 1/2. Moreover, we require the set of inputs in which g is
highly inapproximable to have noticeable density.

In fact, Impagliazzo’s Hardcore Lemma is deeply related to the notion of boosting in learning
theory, as it was first shown in [KS03]. Namely, the boosting algorithm by Schapire and Freund
[FS99] which converts weak learners into strong learns can be seen as the “opposite” of Impagliazzo’s
Hardcore Lemma, in the sense that boosting constructs a hypothesis which closely approximates a
function whereas Impagliazzo’s Hardcore Lemma proves that certain functions are hard to approxi-
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mate [KS03]. Impagliazzo has also recently studied the connections between boosting the Hardcore
Lemma [Lee17].

4.1 Definitions and the original IHCL statement

Before we state the theorem formally, we introduce the required definitions.
Definition 4.1 (UX ). Given a domain X , we use UX to denote the uniform distribution over X .
That is, every x ∈ X is assigned the same probability mass by UX ; namely, 1/|X |.
Definition 4.2 (δ-dense distribution). A distribution A is δ-dense in a distribution B if for all
x ∈ X ,

δ · Pr[A = x] ≤ Pr[B = x].

If B is the uniform distribution on X, then this becomes

δ · Pr[A = x] ≤ 1

|X |
.

In some settings, we will use measures instead of distributions:
Definition 4.3 (Measure). A function µ : X → [0, 1] is a measure on X .

The difference between a probability distribution and a measure is that a measure is not neces-
sarily normalized. Still, a measure induces a probability distribution if we normalize it:
Definition 4.4 (From a measure to a distribution). Given a measure µ : X → [0, 1], µ induces the
probability distribution

Dµ(x) =
µ(x)∑
z∈X µ(z)

.

Definition 4.5 (Density of a measure). Given a measure µ : X → [0, 1], the density of µ, denoted
d(µ), is defined as

d(µ) = E
x∼X

[µ(x)] =
1

|X |
·
∑
x∈X

µ(x).

We say that µ is δ-dense if d(µ) ≥ δ.
We remark that Definition 4.5 is exactly equivalent to Definition 4.2 if we scale µ so that its

largest value is 1 and consider the distribution induced by this scaled µ.
When working with Impagliazzo’s Hardcore Lemma, it is useful to translate between measures

and sets. Historically, proofs involving the Hardcore Lemma always find a hardcore measure or
distribution, but in applications it is often more intuitive to deal with sets instead of measures
[Imp95; KS03; Hol05; TTV09]. This will also be true for us: we will prove our IHCL++ using
distributions, but we will then state the corresponding version using sets, which will allow us to
visualize the theorems pictorially.

We present the formal conversion between measures and sets in Section 4.3, but we state the
definitions here because they provide some intuition on why we understand Definition 4.5 as a
density measure.

The natural definition for the definition of a set is the following:
Definition 4.6 (δ-dense set). Given a set S ⊆ X , we say that S is δ-dense in X if |S| ≥ δ · |X |.
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In other words, S is δ-dense in X if S occupies at least a fraction δ of the domain. Returning
to our discussion on the size of the level sets in Chapter 2, recall that we called ηp := |P |/|X | the
density parameter of the set P in X . Hence, saying that P ⊆ X is δ-dense in X is equivalent to
stating that ηp ≥ δ.

The idea behind how to build a set S from a measure µ so that the notion of density is preserved
is to include an element x ∈ X into S with probability µ(x) (independently for each x). As we
formalize in Section 4.3, this non-constructive construction of S ensures that if µ has noticeable
density, then S has noticeable density as well with high probability.

Conversely, every S ⊆ X has a corresponding measure given by the associated characteristic
function χS . That is, χS(x) = 1 if x ∈ S, and χS(x) = 0 if x /∈ S. Then, we see that

|S|/|X | = Pr[x ∈ S] =
1

|X |
·
∑
x∈X

χS(x) = E
x∼X

[χS(x)],

which explains why the density of a measure is defined as in Definition 4.5.
Lastly, for the IHCL statement, we will need the following two definitions. In the case of IHCL,

we will only work with boolean distinguishers; i.e., all f map from X to {0, 1}. Similarly, in this
chapter, the arbitrary function g will also always be boolean.
Definition 4.7 (δ-weakly hard). Given a class F of functions f : X → {0, 1}, a distribution D on
X , an arbitrary function g : X → {0, 1}, and δ > 0, we say that g is δ-weakly hard with respect to
F on D if, for all f ∈ F ,

Pr
x∼D

[f(x) = g(x)] ≤ 1− δ.

for all f ∈ F . Alternatively, we say that g is (F , δ)-weakly hard on D.
That is, all of the distinguishers f ∈ F fail to compute g on at least a δ fraction of the inputs

x ∈ X . As usual, if D is not specified, then we are implicitly working with the uniform distribution
on the domain.
Definition 4.8 (Strongly hard & Hardcore distribution). Given a class F of functions f : X →
{0, 1}, a distribution D on X , an arbitrary function g : X → {0, 1}, and ϵ > 0, we say that g is
ϵ-strongly hard with respect to F and a distribution D on X if, for all f ∈ F ,

Pr
x∼D

[f(x) = g(x)] ≤ 1/2 + ϵ.

In this case, we say that g is (F , ϵ)-strongly hard on D, or that D is an (F , ϵ)-hardcore distribution
for g.

That is, all of the distinguishers f ∈ F fail to compute g on about half of the inputs in the
domain. We call this “strongly hard” because the fact that Prx∼X [f(x) = g(x)] ≤ 1/2+ ϵ indicates
that g is essentially behaving like a random function. That is, if g ∼ Bern(1/2), then on each
x ∈ X , g(x) returns 0 with probability 1/2, and 1 with probability 1/2. Then, we expect that f(x)

will only match g(x) on approximately half of the points in the domain, exactly as in Definition 4.8.
We will explore this idea further in Section 4.4. We will be using the letter H to denote a hardcore
distribution (and later the letter S to denote a hardcore set).

Clearly, Definition 4.7 (δ-weak hardness) is a weaker notion than Definition 4.8 when δ, ϵ < 1/4.
What about the converse? Can we find a subset of inputs over which δ-weak hardness implies
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strong hardness? Impagliazzo’s Hardcore Lemma answers precisely this question:

Theorem 4.9 (IHCL, [Imp95; Hol05]). Let F be a family of functions from a finite domain
X to {0, 1} and ϵ, δ > 0. Then there exists an s = poly(1/ϵ, 1/δ) such that if g : X → {0, 1}
is a function, which for all functions f0 : X → {0, 1} having complexity at most s with respect
to F satisfies

Pr
x∼X

[f0(x) = g(x)] ≤ 1− δ (g is (Fs, δ)-weakly hard),

then there is a distribution H that is 2δ-dense in UX and for which

∀f ∈ F , Pr
x∼H

[f(x) = g(x)] ≤ 1/2 + ϵ (g is (F , ϵ)-strongly hard on H).

Some considerations regarding the IHCL statement. We make some remarks about Theo-
rem 4.9. First, the weakly-hardness assumption on g is with respect to the uniform distribution on
X , given that we write Prx∼X . (We remark that this can be replaced for an arbitrary distribution,
as we also discuss in Chapter 5. However, for the purposes of this chapter, we will only require
weak hardness with respect to UX .) For the strong hardness conclusion, we are sampling according
to the distribution H. There is another key difference between the assumption and the conclusion:
the δ-weakly hard condition is with respect to a slightly class of distinguishers; namely, with respect
to Fs, which corresponds to the set of functions that have complexity at most s with respect to
the functions in F (see Definition 2.14 and Remark 2.15).

Figure 4.1: Illustration of the two classes of distinguishers considered in the IHCL statement (Theorem 4.9).

An important consideration about IHCL which will be key to our proposed IHCL++ is that
the statement is proving two different things about the distribution H:

• Density. The distribution H is 2δ-dense in UX .

• Indistinguishability. When we sample according to H, g is (F , ϵ)-strongly hard. We call
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this the “indistinguishability” condition because, as we explained above, this corresponds to
stating that g behaves like a random function with respect to the class of distinguishers F .

Lastly, there are some important historical considerations regarding the density parameter of
the distribution H in the IHCL statement. The original 1995 paper by Russell Impagliazzo proved
the IHCL statement in two different ways. The first is a boosting proof via an energy decrease
argument, similar to the boosting proof that we presented in Chapter 3. The second (due to Nisan)
is a proof using von Neumann’s min-max theorem, similar the the min-max proof of the regularity
lemma that we summarized in Section 3.2.

However, the original theorem shown by Impagliazzo finds a hardcore measure of density δ,
rather than 2δ. This difference is important because 2δ is the optimal density parameter for the
hardcore measure. This is because if there exists a hardcore measure for g of density ρ, then g is(
ρ(1/2 − ϵ)

)
-weakly hard on average on UX with respect to F . It took 10 years for Holstein to

prove that we can indeed achieve the 2δ density parameter [Hol05]. However, Trevisan et al.’s proof
of IHCL using the regularity lemma (Theorem 3.1) is only able to recover the original δ-density
parameter, but not Holstein’s optimal 2δ-density parameter [TTV09]. This is a very important fact
regarding the presentation of our results, because by adapting the proof of Trevisan et al. in order to
use a multicalibrated predictor instead of a multiaccurate one, we are able to recover the original 2δ
density parameter from IHCL. That is, a multiaccurate predictor does not seem to imply IHCL with
optimal density parameters, but a multicalibrated predictor can. We also provide a second proof
to IHCL++ different from [TTV09] which also obtains the optimal 2δ density parameter. Still, we
believe that it is valuable to present the two proofs because they use different techniques and exploit
different properties given by a multicalibrated predictor, and hence provide different insights into
how the notion of multicalibration can provide stronger results related to the implications of the
regularity lemma (Theorem 3.1).

4.2 Our proposed IHCL++

As outlined in Chapter 3, Trevisan et al. showed that their regularity lemma (Theorem 3.1) implies
Impagliazzo’s original hardcore lemma (Theorem 4.9), and the results from [TTV09] predate the
emergence of the field of algorithmic fairness. However, due to the equivalence between the multiac-
curacy theorem that we described in Chapter 3, and given that we obtain our ++ theorems through
the lenses of multicalibration, we will use the algorithmic fairness vocabulary when describing the
theorems and proofs from [TTV09]. (Recall from Chapter 3 that we denote our stronger and more
general theorems obtained through multicalibration with the symbol ++.)

In this chapter, we obtain a stronger and more general version of IHCL through a careful analysis
of [TTV09]’s use of a multiaccurate predictor to prove IHCL. Their proof begins by invoking the
multiaccurate theorem to obtain a multiaccurate predictor h. Then, they define the hardcore
measure µ using this h, and then prove that µ satisfies the conclusion of IHCL by leveraging the
multiaccuracy guarantees of h. We observe that a MA predictor h is not part of the IHCL statement
—only F , g, ϵ, and H appear in the statement. Rather, h comes in as a tool in the proof, where the
MA theorem is invoked. For this reason, when proposing our ICHL++ version, we decide to turn
to multicalibrated partitions, rather than multicalibrated predictors. We introduced the definition
of a multicalibrated partition in Section 2.3, where we also explained the relationship between an
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MC predictor and an MC partition. We recall that the key idea behind this relationship is that
the level sets of a predictor induce a partition of the domain X . In this chapter (and subsequent
chapters), we will also be making use of the notation introduced in Section 2.3 that formalizes the
notion of a low-complexity partition.

For the ease of notation, we will be using the following abbreviations:
Definition 4.10. Given a set P ⊆ X , any function g : X → [0, 1], and a distribution D on X , we
define the balance kp of g on P to be

vp := E
x∼D|P

[g(x)], kp := min{vp, 1− vp}.

By the definition of kp, the parameter kp is small precisely when the expected value of g is too
close to 0 or too close to 1; i.e., when g is imbalanced. This is why we call kp the “balance” of g
on P . In particular, kp = 1/2 corresponds g being perfectly balanced, while kp = 0 corresponds to
g being completely imbalanced (i.e., a constant function). The reason why we need to consider the
parameter kp in the proof of IHCL++. We will see that the indistinguishability guarantee within
each set P ∈ P will degrade as ϵ/kp. Therefore, the smaller kp is, the worse the indistinguishability
parameter becomes.

From Section 2.3, recall that we also need to consider the size parameter ηp = |P |/|X | of each
P ∈ P (Definition 2.26). Because we are using the notion of approximate multicalibration, we will
only be considering the sets P ∈ P such that ηp ≥ γ.

We can now introduce our IHCL++ statement:

Theorem 4.11 (IHCL++, measure version). Let X be a finite domain, let F be a family of
functions f : X → {0, 1}, let g : X → {0, 1} be an arbitrary function, and let ϵ, γ > 0. There
exists a partition P ∈ Ft,q,k of X with t = O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2), k = O(1/ϵ)

which satisfies that for all P ∈ P such that ηp ≥ γ, there exists a distribution HP in P of
density 2kp in UP such that g is (F , ϵ/kp)-strongly hard on HP . That is,

∀f ∈ F , Pr
x∼HP

[f(x) = g(x)] ≤ 1

2
+

ϵ

kp
.

Interpretation of IHCL++. Before going into the proof of Theorem 4.11, we explain what our
IHCL++ theorem entails and how it is a stronger and more general version of the original IHCL.

• In Theorem 4.11, we remove the δ-weakly hard assumption from the original IHCL theorem,
but still obtain that g is strongly hard on some distribution. The caveat is that the lower
bound on the density of each hardcore set Hp depends on the balance kp of g on P . Namely, if
g is an “uninteresting” function, then the density of the hardcore sets will be small. However,
in our IHCL++, we can always guarantee strong hardness of g within each P ∈ P on HP .

• We provide a general lower bound for the density of the hardcore distribution HP on each
P ∈ P that depends on the expected value of g on P (i.e., on kp). The parameter kp is an
abstraction of the original parameter δ in IHCL, given that in our Theorem 4.11 we have no
assumption whatsoever on the function g, and hence we also have no δ parameter.
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• In our ++ theorem, the original IHCL occurs both “locally” (on each P ∈ P) and “glob-
ally” (on X ). Theorem 4.11 states that IHCL occurs locally; namely, we obtain a hardcore
distribution HP within each P ∈ P . However, we can always “glue” the different hardcore
measures together Hp in order to obtain a hardcore measure H on X . Since g is strongly hard
on each Hp, g will also be strongly hard on the “glued” hardcore measure H. In Section 4.2,
we will show that if we glue the different hardcore measures Hp together weighted by their
corresponding size parameter ηp := |P |/|X |, and if we bring back the assumption that g is
δ-weakly hard (which is the key assumption in the original IHCL statement), then the glued
hardcore set H has density at least 2δ on UX . That is, we have recovered the original IHCL
statement from our IHCL++ theorem.

Throughout our proof of IHCL++, we will also summarize the [TTV09] proof of the original
IHCL, highlighting the similarities and differences between the two proofs.

Proof of Theorem 4.11. The [TTV09] proof of IHCL begins by invoking the MA theorem to obtain
a multiaccurate predictor h with respect to F , g, and ϵ. In our case, we being by invoking the
approximate-MC partition theorem (Theorem 2.29) with the same parameters ϵ, γ, and where D
corresponds to the uniform distribution on X . This gives us a partition P ∈ Ft,q,k with t =

O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2), k = O(1/ϵ) satisfying∣∣∣ E
x∼P

[f(x) · (g(x)− vp)]
∣∣∣ ≤ ϵ.

for all P ∈ P such that ηp ≥ γ. We remark that we can write x ∼ P instead of P(D)|P and |X |/|P |
instead of 1/ηp because in this case D corresponds to the uniform distribution over X .

In [TTV09], the hardcore distribution H over the domain X is defined as

H(x) := |g(x)− h(x)|∑
y∈X |g(y)− h(y)|

.

Trevisan et al. then show that 1) H is δ-dense in UX , and that 2) g is strongly hard on H. Inspired
by their proof, we define the following probability distribution on each set P ∈ P :

HP (x) :=
|g(x)− vp|∑
y∈P |g(y)− vp|

.

We remark that, unlike in the multiaccuracy case of [TTV09], the denominator in the expression
for HP sums over the set P instead of over the entirety of the domain X . As we now show as part
of our density proof, the denominator of HP is always non-zero, unless vp ∈ {0, 1}. Recall that, by
definition (Definition 4.10),

kP = min{vP , 1− vP }.

Density guarantee. In order to prove that HP has density 2kP in P , by definition of density this
corresponds to showing that

Hp(x) ≤
1

2kp · |P |
.
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In the case of [TTV09], they instead show that∑
x∈X
|g(x)− h(x)| ≥ δ · |X|,

which proves that their H is δ-dense in UX . (Recall that [TTV09] does not recover the optimal
δ density parameter.) Given that our kP represents the density parameter of HP , it is helpful to
draw the parallel between our parameter kP and the δ parameter in [TTV09]. Their relationship
will become clearer in when we recover the original IHCL from IHCL++ (Section 4.2, where we
will see that EP∼P [kp] ≥ δ when we assume that g is δ-weakly hard.)

Let G0 = {x ∈ X | g(x) = 0}, and let G1 = {x ∈ X | g(x) = 1}. Then, it follows that∑
x∈P
|g(x)− vp| =

∑
x∈P∩G1

|1− vp|+
∑

x∈P∩G0

|0− vp|

=
∑

x∈P∩G1

(1− vp) +
∑

x∈P∩G0

vp = |P ∩G1| · (1− vp) + |P ∩G0| · vp

= vp · |P | · (1− vp) + (1− vp) · |P | · vp = 2vp · (1− vp) · |P |

= 2kp · (1− kp) · |P |.

Moreover, |g(x)− vp| ≤ 1− kp. Therefore, we obtain that

Hp(x) ≤
1

2kp · |P |
,

which means that Hp has density 2kp, as required.
Therefore, ∑

x∈P
|g(x)− vp| ≥ kp · |P |,

as required.

Indistinguishability guarantee. We use the following identity, proven in [TTV09], which is
applicable to any domain (i.e., they apply it to the domain X , and we apply it on each P ∈ P
instead):

|g(x)− h(x)| · 1[f(x)=g(x)] =
[(

f(x)− 1

2

)
·
(
g(x)− h(x)

)
+

1

2
· |g(x)− h(x)|

]
,

where 1[f(x)=g(x)] corresponds to the indicator random variable that returns 1 if and only if f(x) =
g(x) (and 0 otherwise).

In our case, h(x) = vp for all x ∈ P for each P ∈ P . Then by taking the expectation on both
sides, and by applying the indistinguishability guarantee given by the ϵ-multicalibrated partition
P, we obtain that for each P ∈ P such that ηp ≥ γ,

E
x∼P

[|g(x)− vp| · 1[f(x)=g(x)]] ≤ ϵ+
1

2
E

x∼P
[|g(x)− vp|],
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where the ϵ term follows from the assumption that P is an approximately multicalibrated partition,
and thus

∣∣∣Ex∼P [f(x) · (g(x)− vp)]
∣∣∣ ≤ ϵ. Then, by the definition of HP , it follows that

Pr
x∼HP

[f(x) = g(x)] =
Ex∼P [|g(x)− vp| · 1[f(x)=g(x)]]

Ex∼P [|g(x)− vp|]
≤ ϵ+ 1/2 · Ex∼P [|g(x)− vp|]

Ex∼P [|g(x)− vp|]

=
1

2
+

ϵ

Ex∈P [|g(x)− vp|
.

Since by the density guarantee we know that
∑

x∈P |g(x)− vp| ≥ kp · |P |, it follows that

1

2
+

ϵ

Ex∈P [|g(x)− vp|
≤ 1

2
+

ϵ

kp
=

1

2
+

ϵ

kp
.

This concludes the proof of Theorem 4.11.

Recovering the original IHCL from IHCL++

Having proved IHCL++, we now show how to recover the original IHCL theorem. The key idea
is to “glue together” the hardcore sets Hp within each P ∈ P , where in this gluing each P ∈ P is
weighted according to its size parameter ηp of the set P .

Recall that in the IHCL statement, we assume that the function g is δ-weakly hard. Hence, we
begin by showing that if g is δ-weakly hard, then “gluing” together the pieces P of the multicali-
brated partition yields density δ.

Proposition 4.12. Let P be a partition of X as in Theorem 4.11. Moreover, assume that g is
δ-weakly hard with respect to Ft,q for some δ > 0, and suppose that ηp ≥ γ for all P ∈ P. Then,

E
P∼P

[kp] ≥ δ.

We remark that we write P ∼ P(D) as P ∼ P because in this case D corresponds to the uniform
distribution over X . We are selecting P with probability proportional to ηP .

Proof. We will argue by contradiction; hence assume that EP∼P [kp] < δ. We will show that this
contradicts the fact that g is δ-weakly hard. More specifically, we show that we can construct an
f ∈ Ft,q such that

Pr[f(x) = g(x)] > 1− δ.

Let fm ∈ Ft,q, where t = O(1/(ϵ4γ)·log(|X |/ϵ)), q = O(1/ϵ2), be the partition membership function
for P as given by Definition 2.28. That is, Pi = f−1

m (i) for all of the k sets Pi ∈ P . We define our
f as follows:

• For each x ∈ X , let i = f(x).

• Let vpi be the expected value of the function g on Pi. If vpi ≤ 1/2, then return f(x) = 0 for
all x ∈ Pi. Otherwise, if vpi > 1/2, then return f(x) = 1.

(We always drop the subscript i when dealing with vp and P , but in this case the subscript is
needed to define this f .) Then, f : X → {0, 1}. We claim that f ∈ Ft,q with the same parameters t =

49



O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2). Indeed, let Cm be the oracle-aided circuit that computes fm.
It is enough that we hard-wire the values 0, 1 as described above. (To know whether it should be
0 or 1 for each Pi ∈ P , we use a look-up table that contains the values vpi .) Hence, the circuit that
computes f is of size t = O(1/(ϵ4γ) · log(|X |/ϵ)) + |P| and continues to have q = O(1/ϵ2) oracle
gates (the same as for fm) [Bar22, §9.1.1.]. Since |P| = O(1/ϵ) by Theorem 4.11, it follows that
f ∈ Ft,q, since the term O(1/ϵ) is absorbed into t.

Figure 4.2: Illustration of the construction of the function f .

The intuitive meaning of the values 0 and 1 is the following: we want to show that f approxi-
mates g “quite well”, in the sense that Pr[f(x) = g(x)] > 1− δ. The above construction is saying
that f is equal to 0 in all of the Pi such that EPi [g(x)] ≤ 1/2, and equal to 1 in all of the Pi such
that EPi [g(x)] > 1/2. We now show that this is indeed a good approximation of g; good enough
that it contradicts the assumption that g is (Ft,q, δ)-weakly hard.

Fix some P ∈ P , and as usual let vp := Ex∼P [g(x)]. Since g is a boolean function and f equals
the majority value of g on P by construction, it follows that

Pr
x∼P

[f(x) = g(x)] = max{vp, 1− vp} = 1−min{vp, 1− vp} = 1− kp,

since f = 0 when vp ≤ 1/2 and f = 1 when vp > 1/2.
Because this holds for every P ∈ P , when we consider the probability that f(x) = g(x) over X

it follows that
Pr
x∼X

[f(x) = g(x)] = 1− E
P∼P

[kp],

since
Pr
x∼X

[f(x) = g(x)] =
∑
P

(1− kp) ·
|P |
|X|

= E
P∼P

[1− kp] = 1− E
P∼P

[kp].

Since by assumption EP∼P [kp] < δ, it follows that

Pr
x∼X

[f(x) = g(x)] ≥ 1− δ,

which contradicts the (Ft,q, δ)-weakly hardness of g.

In Proposition 4.12, we are assuming that ηp ≥ γ for all P ∈ P in order to make its proof
cleaner. However, of course, we cannot be making this assumption. Instead, we should only be
“gluing” together the pieces P ∈ P that have enough size and enough mass; i.e., such that ηp and
kp are larger than some threshold. In the case of the size parameter ηp, its threshold corresponds
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to the γ parameter in the approximate MC definition. In the case of the balance parameter kp, we
introduce a new parameter τ :
Definition 4.13. Let γ, τ > 0, and let P be a partition of the domain X . We say that a set P ∈ P
is (γ, τ)-good if ηp ≥ γ and kp ≥ τ . We use the indicator random variable 1G to denote whether
P is good. Namely, 1G(P ) for P ∈ P returns 1 only if ηp ≥ γ and kp ≥ τ ; otherwise, it returns 0.
(The letter G stands for “good”.)

Given this definition, we now re-evaluate Proposition 4.12. Namely, the next fact follows directly
from coupling the proof of Proposition 4.12 and Definition 4.13:

Corollary 4.14. Let P, t, q, ϵ as in Theorem 4.11, and let γ, τ > 0. Moreover, assume that g is
δ-weakly hard with respect to Ft,q for some δ > 0. Then,

E
P∼P

[kp · 1G(P )] ≥ δ − γ · |P| − τ = δ −O(γ/ϵ)−O(τ),

where 1G(P ) returns 1 only if ηp ≥ γ and kp ≥ τ .

Recall that |P| = O(1/ϵ) follows from Claim 2.11. We can now prove the original IHCL from
IHCL++:

Proof of IHCL using IHCL++. Let F ,X , ϵ, δ be the assumption parameters in IHCL. We define
the parameters ϵ′ := ϵ2δ, γ := ϵϵ′, and invoke the IHCL++ theorem with these parameters ϵ′, γ.
By IHCL++, we obtain a partition P ∈ Ft,q,k of X with t = O(1/(ϵ′4γ) · log(|X |/ϵ′)), q = O(1/ϵ′2),
k = O(1/ϵ′) such that, for each P ∈ P where ηp ≥ γ = ϵϵ′, there exists a distribution HP in P of
density 2kp such that g is (F , ϵ/kp)-hard on HP .

Let τ := ϵδ. By Corollary 4.14, when we only consider the P ∈ P that are (γ, τ)-good, we
obtain that

E
P∼P

[kp · 1G(P )] ≥ δ −O(γ/ϵ′)− τ.

By plugging in the definition of each value ϵ′ = ϵ2δ, γ = ϵϵ′, and τ = ϵδ, the expression δ−O(γ/ϵ′)−τ
simplifies to δ · (1−O(ϵ)).

We now construct a hardcore measure H on X as follows: we define H by “gluing up” the
distributions Hp such that P is good. Formally, for each x ∈ X ,

H(x) = Hp(x) · 1G(P ),

where P corresponds to the unique P ∈ P such that x ∈ P (which is unique since P is a partition).
We now analyze (1) the density of H, and (2) the hardness of g on H. Since each Hp such that

P is good has density 2kp in UP and EP∼P [kp ·1G(P )] ≥ δ · (1−O(ϵ)) by Proposition 4.12, it follows
that H has density 2δ · (1−O(ϵ)) in UX .

For the hardness of g, we see that

Pr
x∼H

[f(x) = g(x)] = E
P∼P

[
Pr

x∼Hp

[f(x) = g(x)
]
· 1G(P )

]
≤ E

P∼P

[(
1/2 +

ϵ′

kp

)
· 1G(P )

]
=

=
1

2
+ E

P∼P

[
ϵ′

kp
· 1G(P )

]
≤ 1

2
+

ϵ′

τ
.
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By plugging in the definitions of the parameters, namely ϵ′ = ϵ2δ and τ = ϵδ, we obtain that
ϵ′/τ = ϵ. Hence, we obtain that g is (F , ϵ)-strongly hard on H.

Therefore, we have shown that H is a measure of density 2δ · (1 − O(ϵ)) in UX such that g is
(F , O(ϵ))-strongly hard on H. In order to recover the original IHCL statement, we observe that we
can modify H in order to make its density at least 2δ in UX while maintaining the (F , O(ϵ))-strong
hardness of g on H. Namely, we can arbitrarily increase the value H(x) for some x in order to get
to density 2δ. However, this modification can only change Prx∼H[f(x) = g(x)] by at most O(ϵ).
Therefore, despite this modification, g is (F , O(ϵ))-strongly hard on H.

4.3 Sets and measures

There are two possible ways of describing the hardcore set of inputs, as it was already described
in [Imp95; Hol05]. One is to find a hardcore measure, which corresponds to the distribution µ

in Theorem 4.9. Notice that µ is defined over all the domain X : each point x ∈ X receives a
probability mass µ(x). That is, Theorem 4.9 corresponds to the measure version of Impagliazzo’s
Hardcore Lemma.

On the other hand, we can compute a hardcore set, which corresponds to a subset of the
inputs X . To obtain a hardcore set H from a hardcore measure µ, we construct H probabilistically
as follows: for each x ∈ X , we add x to H with probability µ(x). Then, the fact that µ is δ-dense
with respect to UX implies that H is δ-dense in X on expectation (i.e., that |H| ≤ δ|X |). To show
this, we proceed via a probabilistic method argument and a Chernoff bound. We formalize this
idea in Lemma 4.16. For details, see Section 6 in [Imp95], Section 2.1.1 in [Hol05], or Section 4.4
in [KS03].

For our proofs in this chapter, we will proceed with the measure version of the theorem. However,
we will also state the theorems in their set versions: while the measure version is better for some
applications, the set version is easier to visualize and is generally more intuitive. We recall that
d(H) denotes the density of a measure H.

The idea behind the conversion between sets and measures is originally due to Impagliazzo, but
we follow the proof in [KS03, §4.4]. For that, we need to clarify the meaning of a hardcore set
(as opposed to a hardcore distribution). Recall that every S ⊆ X has a corresponding measure
given by the associated characteristic function χS : X → {0, 1}. That is, χS(x) = 1 if x ∈ S, and
χS(x) = 0 if x /∈ S. Given that every measure induces a probability distribution (Definition 4.4),
S induces a probability distribution DS , defined as

DS(x) =
χS(x)∑

x∈X χS(x)
.

The natural definition of a hardcore set is then the following:
Definition 4.15 (Hardcore set). Given a class F of functions f : X → {0, 1}, an arbitrary function
g : X → {0, 1}, and ϵ > 0, we say that g is ϵ-strongly hard with respect to F on a set H ⊂ X if, for
all f ∈ F ,

Pr
x∼H

[f(x) = g(x)] ≤ 1

2
+ ϵ.

In that case, we say that H is an (F , ϵ)-hardcore set for g.
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That is, g is very hard to approximate inside inside of the set H ⊆ X .
We can now state the formal conversion from a hardcore measure to a hardcore set. The reader

should feel free to skip the proof, as it is not essential for the rest of this chapter.

Lemma 4.16 (From measures to sets [KS03, Lemma 24]). Let X = {0, 1}n, g : X → {0, 1} an
arbitrary function, ϵ, δ > 0, such that δ ≥ 1/|X |1/2, and F a class of functions f : X → {0, 1} such
that log(|F|) ≤ |X |ϵ2δ2. Suppose that µ is an (F , ϵ)-hardcore measure for g such that d(µ) ≥ δ.
Then there exists a set H with |H| ≥ δ · |X | such that H is an (F , 4ϵ)-hardcore set for g.

Proof. Given the measure µ, we construct the claimed set H as follows: for each x ∈ X = {0, 1}n,
include x to H with probability µ(x). This is a non-constructive set H, but we are still able to
argue about its density. We denote the characteristic function of H by χH .

Let f ∈ F and let t(x) be an arbitrary function. We now use the following fact, where without
loss of generality we view functions f and t as taking values in {−1, 1}:

Lemma 4.17. Let ρ > 0. Then,

Pr
Dµ

[f(x) = t(x)] =
1

2
+ ρ ⇐⇒

∑
x∈{0,1}n

µ(x)f(x)t(x) = 2ρ|µ|,

where Dµ denotes the probability distribution induced by µ and |µ| =
∑

x∈X µ(x).

This is a direct consequence from the definition of |µ|. Next, by the definition of χH , it follows
that

E
x∼H

[χH(x)] = µ(x).

By linearity of expectation, it follows that

E
x∼H

[∑
x∈X

χH(x)f(x)g(x)
]
=
∑
x∈X

µ(x)f(x)g(x).

Then, by applying Lemma 4.17 with t := g, it follows that∑
x∈X

µ(x)f(x)g(x) ≤ 2ϵ|µ|,

since by assumption µ is an (Ft, ϵ)-hardcore measure for g. By definition, Prx∼Dµ [f(x) = g(x)] ≤ ϵ,
and hence the parameter ρ in Lemma 4.17 corresponds to ϵ.

Next, we use Hoeffding’s inequality:

Claim 4.18 (Hoeffding’s tail bound). Let X1, . . . , XN be independent random variables with Xi ∈
[a, b] for all i. Then, for all t ≥ 0,

Pr
[ 1
n

n∑
i=1

(Xi − E[Xi]) ≥ t
]
≤ exp

( −2nt2
(b− a)2

)
.

In our case, for each value of x ∈ X the quantity Xx := χH(x)f(x)g(x) is a random variable
in the interval [−1, 1]. Hence, each of these random variables corresponds to one Xi in Hoeffding’s
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bound. We just showed that

E
x∼X

[∑
x

χH(x)f(x)g(x)
]
≤ 2ϵ|µ| = 2ϵ · |X | · d(µ),

since by definition of density of a measure (Definition 4.5) we know that

d(µ) =
|µ|
|X |

.

Set t := 2ϵd(µ). Since Xx ∈ [−1, 1] for all x ∈ X , it follows that (b− a)2 = 4. Then, by Hoeffding’s
tail bound it follows that

Pr
[ 1

|X |
∑
x

Xx ≥ 4ϵd(µ)
]
≤ exp

(−2 · |X |(2ϵd(µ))2
4

)
.

Since by assumption d(µ) ≥ δ, it follows that the above probability is less than exp(−2 · |X | · ϵ2δ2).
Since by assumption |F| ≤ 2|X |·ϵ2·δ2 ≪ 1

10 exp(2 · |X | · ϵ2δ2), and hence by the the union bound this
implies that the probability that there exists some f ∈ F such that

∑
x χH(x)f(x)g(x) ≥ 4ϵ|µ| is

less than 1/10.
Next, applying the Hoeffding bound to |H| (which is a sum of |X | independent random variables),

by similar calculations and using the assumptions that d(µ) ≥ δ and δ ≥ 1/|X |1/2, it follows that
|H| ≥ 2δ · |X |.

Lastly, putting everything together, we conclude that there exists some set H such that

(1) |H| ≥ δ · |X |,

(2)
∑
x

χH(x)f(x)g(x) ≤ 4ϵ|µ| ≤ 8δ|H| = 8ϵ|χH |.

Using Lemma 4.17 with t := g and ρ := 4ϵ we thus obtain that

Pr
x∼H

[f(x) = g(x)] ≤ 1

2
+ 4ϵ

for all f ∈ F . Hence, H is an (F , 4ϵ)-hardcore set for g, as we wanted to show.

Remark 4.19. In Lemma 4.16, we used the assumption log(|F|) ≤ |X |ϵ2δ2. We remark that in
the case where F corresponds to circuits of size s and X = {0, 1}n, this assumption is always true.
Namely, in that case, |F| ≤ 22ns always holds. This is because, by a counting argument, in order
to specify a circuit it suffices to specify, for each of the s gates of the circuit, the two inputs and
the label of the gate.

Set version of ICHL++

Given that we can transform measures into sets via a probabilistic method argument (as described
in Section 4.3), we can now state the corresponding versions of our IHCL++ theorem (measure
version; Theorem 4.11) following the same transformation. While these hardcore sets are non-
constructive due to the nature of the probabilistic method argument used in Section 4.3, it is more
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intuitive to grasp the IHCL++ by visualizing hardcore sets rather than hardcore measures (see,
e.g., Figure 4.3). Moreover, we use the set version of IHCL and IHCL++ in Chapter 5.

Theorem 4.20 (IHCL++, Set version). Let X be a finite domain, let F be a family of
functions f : X → {0, 1}, let g : X → {0, 1} be an arbitrary function, let ϵ, γ > 0. There
exists a partition P ∈ Ft,q,k of X with t = O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2), k = O(1/ϵ)

which satisfies that for all P ∈ P such that ηp ≥ γ and such that |F| ≤ 1
10 exp(2|X |ϵ2k2p),

there exists a set Hp ⊆ P of density |Hp|/|P | ≥ 2kp such that Hp is an (F , ϵ/kp)-hardcore
set for g. That is,

∀f ∈ F , Pr
x∈Hp

[f(x) = g(x)] ≤ 1/2 +
ϵ

kp
.

Proof. We use the ICHL++ measure version theorem (Theorem 4.11) with ϵ/4 to obtain a partition
P ∈ Ft,q,k such that there exists a distribution Hp of density 2kp in UP for each P ∈ P such that
g is (F , ϵ/(ηp · kp))-hard on HP . Then, we apply Lemma 4.16 to each of the Hp to obtain the
corresponding set Hp ⊆ P .

Visual interpretation of IHCL++. Having translated the IHCL++ to hardcore sets rather
than hardcore measures, we can now more easily visualize and interpret the IHCL++ theorem
and corollary. In the original IHCL statement, we assume that g is δ-weakly hard and obtain a
hardcore set H for g that occupies at least a 2δ-fraction of the space X . In our IHCL++, we do
not assume that g is δ-weakly hard, and we obtain many “little” hardcore sets Hp, one per set P in
the partition P, such that each of these sets occupies at least a 2kp-fraction of the space |P | (i.e.,
of the set P to which they belong). The kp parameter corresponds to the balance of g in the set P :
the closer the expected value of g on P is to 0 or 1, the smaller the kp parameter is, and hence the
“less interesting” the hardcore set is (in the sense that it might occupy a very small fraction of the
space).

However, when we bring back the assumption that g is δ-weakly hard, we proved that then
the average value of the kp parameter (over all P ∈ P) is at least δ (Propostion 4.12). Then, by
“gluing” all of the “little” hardcore sets together, we obtain a large hardcore set – large in the sense
that it occupies at least a 2δ fraction of the domain |X |, as in the original IHCL theorem. However,
unlike the original IHCL theorem, each P continues to have its own “little” hardcore set.
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Figure 4.3: Visual representation of the difference between the original IHCL and our ICHL++.

Figure 4.4: Visual representation of the recovery of the original IHLC from IHCL++. The density of Hi within Pi might
still be “uninteresting”, but when we glue all of the Hi together, we obtain a hardcore set H ⊆ X that occupies at least
a 2δ fraction of the space.

4.4 Multicalibration gives us indistinguishability “for free”

In this section, we further explore the distinctions between the original IHCL statement and our
ICHL++ through the lenses of the differences between MA and MC. A natural question that arises
when one encounters the IHCL++ statement is: How is it possible that the IHCL++ theorem is
able to obtain hardcore sets for an arbitrary function g rather than for a δ-weakly hard function g?
Returning to our explanation at the beginning of this chapter, we should think of a hardcore set
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as subset of the domain X where X is very hard to approximate by functions f ∈ F . In the
hardcore set, the function g is behaving “like a random function”, because the distinguishers f ∈ F
cannot guess the outputs of g(x) with probability larger than 1/2 + ϵ. We make this idea precise
in Claim 4.23.

In order to provide intuition for why IHCL++ works for an arbitrary function, we have to return
to the notion of multicalibration. The key to our proof of IHCL++ is to use a multicalibrated
partition P, which, as we explained in Chapter 2 (more concretely, in Claim 2.27) is induced by a
multicalibrated predictor. Let us recall the definition of an (F , ϵ)-multicalibrated partition P: each
P ∈ P satisfies ∣∣∣ E

x∼P
[f(x) · (g(x)− vp)]

∣∣∣ ≤ ϵ,

where vp := EP [g(x)] and ηp := |P |/|X |. (For simplicity, assume that D corresponds to the uniform
distribution over X .)

Meanwhile, if h is an (F , ϵ)-multiaccurate predictor for g, this implies that∣∣∣ E
x∼X

[f(x) · (g(x)− h(x))]
∣∣∣ ≤ ϵ.

The key to understanding the “power” of a multicalibrated partition P is to realize that MC is not
just “MA on each level set”. Not only did we swap x ∼ X for x ∼ P below the expectation, another
difference is that, in the case of MC, vp is a constant, whereas the h(x) in MA is not. Crucially, this
implies that, within each level set P , the function g is ϵ-indistinguishable from a Bernoulli random
variable of parameter vp. Formally:

Lemma 4.21 (g is indistinguishable from a Bernoulli within each level set). Let X be a finite
domain, F a family of functions f : X → {0, 1}, g : X → {0, 1} an arbitrary function, and ϵ > 0. Let
P be an (F , ϵ)-multicalibrated partition for g. Then, within each P ∈ P, g is (F , ϵ)-indistinguishable
from the random variable Xp ∼ Bern(vp).

We recall the definition of (F , ϵ)-indistinguishability from Chapter 2:
Definition 4.22. Given X ,F , ϵ > 0, a distribution D on X , and two arbitrary functions g, h : X →
[0, 1], we say that g and h are (F , ϵ)-indistinguishable if∣∣∣ E

x∼X
[f(x) · (g(x)− h(x))]

∣∣∣ ≤ ϵ.

We also remark that X ∼ Bern(vp) means that X is distributed as a Bernoulli random variable
of parameter vp. This means that Pr[X = 1] = vp and Pr[X = 0] = 1− vp. It is useful to think of
X ∼ Bern(vp) as a coin flip with a biased coin, where the bias corresponds to vp.

Proof of Lemma 4.21. Since P is an (F , ϵ)-MC partition for g, it follows that∣∣∣ E
x∼P

[f(x) · (g(x)− vp)]
∣∣∣ ≤ ϵ,

for all f ∈ F and P ∈ P such that ηp ≥ γ. Then, the claim follows directly from the fact that
Xp ∼ Bern(vp) implies that E[Xp] = vp.
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This is the key property of a multicalibrated partition: we have managed to partition X into
disjoint sets P such that within each P , g is indistinguishable from a Bernoulli of parameter vP .
In a way, we can think of this as defining g as piece-wise Bernoulli’s, which are extremely simple
functions: being indistinguishable from a Bernoulli is the computational analogue of being equal to
a constant. Hence, we can think of these |P| Bernoulli random variables as the “scaffoldings” of g.

Having established that an MC partition of X corresponds to a decomposing X into parts P ∈ P
such that g is indistinguishable from a Bernoulli random variable in each P , we now explain why
we should expect this to imply that g is strongly hard in some region Hp within each P .

To do so, we begin by analyzing the case where X ∼ Bern(1/2). I.e., this would correspond to
a set P ∈ P where vp := EP [g(x)] = 1/2. We are interested in this case because a random function
corresponds to a Bernoulli random variable of parameter 1/2. Again, we think of Bern(vp) as a
coin flip with bias vp. Hence, in the case where vp = 1/2, this corresponds to an unbiased coin
flip, and hence the coin is behaving “randomly”. Intuitively, this is why a random function yields
strong hardness: if we were trying to guess the outputs of a boolean random function / a Bernoulli
of parameter 1/2, we would expect to be correct on half of the cases on average. Formally:

Claim 4.23. Let X be a finite domain, F a class of distinguishers f : X → {0, 1}, g : X → [0, 1],
and ϵ > 0. If g is (F , ϵ)-indistinguishable from the constant 1/2 function, then g is (F , ϵ)-strongly
hard.

Proof. This follows from the usual equivalence between pseudorandomness and unpredictability.
Namely:

Pr
x∼X

[f(x) = g(x)] = 2 E
x∼X

[(f(x)− 1/2)(g(x)− 1/2)] + 1/2.

Note that this is the same equivalence that we used in the indistinguishability part of the proof to
Theorem 4.11.

This is why an MC partition is giving us “indistinguishability for free”: If vp = 1/2 in some
P ∈ P , then g is already (F , ϵ)-strongly hard over P . If vp ̸= 1/2, then obtaining strong hardness
is not as direct (as we study in the following section), but one would expect that we can get it from
moving vp closer to 1/2. Still, the “real work” comes from the multicalibrated partition, which
ensures that g is indistinguishable to a Bernoulli random variable on each P ∈ P . To obtain strong
hardness, it is a matter of “shifting” the vp parameter to 1/2.

In the following section, we use these ideas and observations about a multicalibration partition
to provide an alternative proof to IHCL++. Importantly, this proof does recover the 2δ optimal
density paramter, which we did not achieve in our first proof for IHCL++ (Section 4.2).

4.5 An alternative proof to IHCL++

By using the ideas described in Section 4.4, namely, how MC provides “indistinguishability for free,
we can obtain a new and different proof for our IHCL++ theorem (Theorem 4.11). We believe
that presenting this proof is valuable because it uses a completely different technique than our first
proof. (Recall that our first proof followed the structure of the proof by Trevisan et al. that a
multiaccurate predictor implies IHCL.)

We begin by observing the following: Consider the set version of our IHCL++. In the case
where vp = 1/2 for some P ∈ P , this implies that there exists a hardcore set Hp in P of density
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|Hp|/|P | ≥ 2kp = 2 · min{1/2, 1/2} = 1. This means that the hardcore set is the entire set P .
We first see that this does indeed make sense; that is, that the entire level set is a hardcore set.
Intuitively, this is explained by the ideas that we laid out in Section 4.4. Namely, when vp = 1/2, the
multicalibration condition implies that g is (F , ϵ)-indistinguishable from the constant 1/2 function.
By Claim 4.23, this implies that g is already (F , ϵ)-strongly hard on the entire set, and therefore it
makes sense that Hp = P in this case.

We now formally prove that this is indeed the case.

1. Changing the ranges of f and g. Assume that ηp ≥ γ and vp = 1/2. Let f, g : X → {0, 1},
and let f̃ , g̃ : X → {−1, 1}. We change between f, g and f̃ , g̃ as follows:

f̃(x) := 2f(x)− 1, f(x) :=
1

2
f̃(x) +

1

2
.

We show that if vp = 1/2 on a set P ∈ P , then g is (F , ηpϵ)-strongly hard on P . By the MC
condition on set P ∈ P , we know that∣∣∣E

P
[f(x) · (g(x)− 1/2)]

∣∣∣ ≤ ϵ,

since vp = 1/2.
Here, all expectations and probabilities are taken with respect to the uniform distribution on P ,

i.e., each point has probability mass 1/|P |. By the transformations between f, f̃ , g, g̃ above, it
follows that

g(x)− 1

2
=

1

2
· g̃(x),

f̃(x) =
1

2
f̃(x) +

1

2
.

Plugging these into the MC condition on P , the expression becomes∣∣∣E
P

[(1
2
· f̃(x) + 1

2

)
·
(1
2
· g̃(x)

)]∣∣∣ ≤ ϵ.

In order to simplify the expression, since F is arbitrary, we instead apply the MC condition to the
distinguisher 2f(x)− 1. Then, the MC condition with f̃ , g̃ becomes∣∣∣E

P

[(
2 ·
(1
2
· f̃(x)

))
·
(1
2
· g̃(x)

)]∣∣∣ ≤ ϵ,

which simplifies to ∣∣∣E
P
[f̃(x) · g̃(x)]

∣∣∣ ≤ ϵ. (4.24)

Next, we show that g is (F , 1/2− ηpϵ)-hard on P . For the sake of contradiction, suppose that

Pr
x∼P

[f(x) = g(x)] >
1

2
+ ϵ.
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Then, ∣∣∣E
P
[f̃(x) · g̃(x)]

∣∣∣ = 2 Pr
x∼P

[f(x) = g(x)]− 1 > 2ϵ,

which contradicts Equation 4.24. Therefore, g is (F , ϵ)-strongly hard in the entire level set P when
its expected value is 1/2, as we wanted to show.

2. Balancing g using µ. We now proceed to the general case, i.e., when EP [g(x)] = vP for any
vP ∈ [0, 1] (rather than the restricted case vp = 1/2. Our idea is to use the measure µp to “balance”
g so that its expected value over µp is 1/2, and then we can apply the previous reasoning to show
that g is (F , ϵ/vp(1− vp))-strongly hard.

Let P ∈ P . We want to define a distribution µp over P such that

E
x∼µp

[g(x)] = 1/2.

We claim that we can do so by defining µp as follows:

µp(x) =


1

2vp
· 1

|P |
if g(x) = 1,

1

2(1− vp)
· 1

|P |
if g(x) = 0.

First, we check that µp(x) is indeed a probability distribution. Let G0 = {x ∈ X | g(x) = 0} and
G1 = {x ∈ X | g(x) = 1}.∑

x∈P
µp(x) =

∑
x∈∩G1

µp(x) +
∑

x∈P∩G0

µP (x) =
∑

x∈∩G1

1

2vp
· 1

|P |
+

∑
x∈P∩G0

1

2(1− vp)
· 1

|P |

= vp · |P | ·
1

2vp
· 1

|P |
+ (1− vP ) · |P | ·

1

2(1− vp)
· 1

|P |
=

1

2
+

1

2
= 1.

Moreover, it is clear that µp(x) ∈ [0, 1] for all x ∈ P . Hence, µp is indeed a probability distribution.
Next, we show that Ex∼µp [g(x)] = 1/2.

E
x∼µp

[g(x)] =
∑
x∈P

µp(x) · g(x) =
∑

x∈P∩G1

µp(x) =
∑

x∈P∩G1

1

2vp
· 1

|P |
= vp · |P | ·

1

2vp
· 1

|P |
=

1

2
.

Finally, we show that µp has the required density. Let µp be the non-normalized version of µ; i.e.,
µp(x) = 1/(2vp) if g(x) = 1 and µp(x) = 1/(2(1 − vp)) if g(x) = 0. Then, we want to show that∑

x∈P µ(x) ≥ 2kp · |P |. By a similar calculation:

∑
x∈P

µ(x) =
∑

x∈P∩G1

µ(x) +
∑

x∈P∩G0

µ(x) =
1

2vp
· vp · |P |+

1

2(1− vp)
· (1− vp) · |P | = |P |.

Then, |P | ≥ 2kp · |P | holds if and only if 1
2 ≥ kp, which is always true since kp = min{vp, 1− vp} by

definition, and vp ∈ [0, 1].
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Therefore, we now know that

• Ex∈P [g(x)] = vp.

• Ex∼µP [g(x)] = 1/2.

By the approximate MC condition, we know that, for each P ∈ P such that ηp ≥ γ,∣∣E
P
[f(x) · (g(x)− vp)]

∣∣ ≤ ϵ.

We now consider the MC inequality by splitting it between the points in X where g is 1 and the
points in X where g is 0. That is:∣∣∣E

P
[f(x) · (g(x)− vp)]

∣∣∣ = vp · E
G1∩P

[f(x) · (1− vp)] + (1− vp) · E
G0

[f(x) · vp]

= vp · (1− vp) ·
∣∣∣ E
G1∩P

[f(x)]− E
G0∩P

[f(x)]
∣∣∣ ≤ vp · (1− vp) · ϵ,

by the definition of µ. Intuitively, µ was defined precisely so that the distinguishers cannot tell
whether we are sampling from G1 ∩ P or from G0 ∩ P .

Therefore, we achieve indistinguishability with respect to the following ϵ′:

ϵ′ :=
ϵ

vp(1− vp)
.

Let µ0 correspond to the restriction of µp on the domain {x ∈ P | g(x) = 0}, and let µ1 correspond
to the restriction of µp on the domain {x ∈ P | g(x) = 1}. Then, it follows that

Pr
µ
[f(x) = g(x)] =

1

2
Pr
µ1

[f(x) = 1] +
1

2
Pr
x∈µ0

[f(x) = 0]

=
1

2
+ E

µ1

[f(x)]− E
µ0

[f(x)] =
1

2
+ ϵ′,

as we wanted to show.
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5
Characterizations of Pseudoentropy

Computational analogues of information-theoretic notions have given rise to some of
the most interesting phenomena in complexity and cryptography. For example,
computational indistinguishability, which is the computational analogue of statistical
distance, enabled bypassing Shannon’s impossibility results on perfectly secure
encryption, and provided the basis for the computational theory of pseudorandomness.

Vadhan & Zheng [VZ13]

Information theory studies the quantification and communication of information. Claude
Shannon was one of the main founders of the field in the 1940s, and it has since then become a key
element in many applications, such as data compression or error correcting codes. A fundamental
notion in information theory is that of entropy of a random variable X, which can be thought of
as the amount of randomness in X.

In computational complexity and cryptography, a key development has been the study of com-
putational analogues of concepts from information theory. Before we use any concepts from infor-
mation theory, we have already encountered this phenomenon in Chapter 4: namely, we explained
how it was useful in some contexts to think of a function g being indistinguishable from a constant
function (in this context, the constant function corresponds to the simulator h on a level set) being
equivalent to g being indistinguishable from a Bernoulli random variable.

More broadly, the notion of computational indistinguishability has become one of the most
fundamental notions in theoretical computer science [GM82; Yao82]. We can think of the notion
of computational indistinguishability as being the computational analogue of statistical distance.
Formally:
Definition 5.1 (Computational indistinguishability). Given a class F of distinguishers f : X →
{0, 1}, ϵ > 0, and two distributions D1 and D2 on X , we say that D1 and D2 are (F , ϵ)-indistinguish-
able if for all f ∈ F , ∣∣∣ Pr

x∼D1

[f(x) = 1]− Pr
x∼D2

[f(x) = 1]
∣∣∣ ≤ ϵ.

There is an important difference in settings depending on the choice of F : namely, whether
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the distinguishers are non-uniform or uniform. In the case of non-uniform models of computation,
the distinguishers correspond to boolean circuits, whereas in the case of uniform models, the
distinguishers corespond to polynomial time algorithms. In this section, we will only state our
theorems with the class F corresponding to boolean circuits, and hence our results correspond to
the non-uniform setting. However, we remark that the results can be extended the the uniform
setting; in particular, the work of Vadhan and Zheng on which this chapter is based on [Zhe14;
VZ13], state the theorems and definitions that we work with on both the non-uniform and uniform
settings.

In the case of the original paper of Goldwasser and Micali, the distinguishers correspond to
probabilistic polynomial-time algorithms [GM82]. Hence, the key difference is that computational
indistinguishability only considers tests that are efficient, whereas statistical distance allows any
test. The fact that simple computational assumptions make these two notions completely different
allowed the development of secure encryption in cryptography, among many other advancements
[BSW03]. This is another reason for why introducing a family F of distinguishers is crucial in all
of the applications that we are seeing.

Given this context, the next natural information-theoretic notion that one would consider is
that of entropy. Computational analogues of entropy were subsequently introduced by Yao [Yao82]
and Håstad, Impagliazzo, Levin, and Luby [HILL99], the latter being known as pseudoentropy. The
notion of pseudoentropy allowed Håstad et al. to prove the fundamental result that establishes the
equivalence between pseudorandom generators and one-way functions [VZ12], which is one of the
fundamental results in cryptography and complexity theory. Later, Vadhan and Zheng showed
that the notion of pseudoentropy is equivalent to hardness of sampling [VZ12]. In his PhD thesis,
Zheng proved a similar theorem but for average-case variants of the Håstad et al. instead, known
as pseudo-average min-entropy, which we will refer to as PAME [Zhe14]. As we will now develop,
the boolean case of PAME (i.e., the special case that involves only a binary alphabet) is equivalent
to the dense hardcore distributions of Impagliazzo that we considered in Chapter 4. Through
this relationship, we will be able to propose our generalized PAME++ theorem by employing our
IHCL++ theorem from Chapter 4.

5.1 Definitions

We begin by reviewing the necessary definitions. Throughout this chapter, capitalized letters denote
random variables. In particular, X continues to correspond to the domain, while X now denotes
a random variable. In this chapter, X will correspond to {0, 1}n; i.e., the set of all n-bit strings.
Hence, |X | = 2n.

The original Shannon entropy is defined as follows:
Definition 5.2 (Shannon entropy). The Shannon entropy of a discrete random variable X is
defined as

H(X) := E
x∼X

[
log
( 1

Pr[X = x]

)]
.

Throughout this chapter, we will need to consider the conditional version of various definitions.
The following is the conditional version of Shannon entropy:
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Definition 5.3 (Conditional Shannon entropy). The conditional Shannon entropy of a random
variable Y given random variable Z is defined as

H(Y |Z) := E
z∼Z

[H(Y |Z=z)].

As introduced in the beggining of this chapter, Håstad et al. introduced the following computa-
tional analogue of Shannon entropy, which they called pseudoentropy:
Definition 5.4 (Pseudoentropy [HILL99], informal). A random variable X has pseudoentropy at
least k if there exists a random variable Y such that

1. H(Y ) ≥ k, where H(·) denotes Shannon entropy;

2. X is computationally indistinguishable from Y .

One of the reasons why pseudoentropy is an interesting concept, as explained by [HILL99;
VZ13], is that a random variable can have much higher pseudoentropy than its Shannon entropy.
An example where this is true, for example, is the case of pseudorandom generators.

The reason why Definition 5.4 is labeled as informal is because it does not specify the class of
distinguishers against which X and Y ought to be computational indistinguishable. In particular, it
does not distinguish between the non-uniform and uniform settings. We can make the definition of
pseudoentropy formal either by working with non-uniform distinguishers or uniform distinguishers.
As we outlined in the introduction, in this chapter we will only work in the non-uniform setting.
Hence, the formal definition of pseudoentropy that we work with is the following one:
Definition 5.5 (Pseudoentropy, non-uniform setting). Let F be the class of circuits of size at
most s, and let ϵ > 0. We say that a random variable X has (F , ϵ)-non-uniform pseudoentropy at
least k if there exists a random variable Y such that

1. H(Y ) ≥ k, where H(·) denotes Shannon entropy;

2. X and Y are (F , ϵ)-indistinguishable.

The uniform version of the notion of pseudoentropy can be found in [VZ12, Def. 210], which
requires some some subtle technialities, such as the use of security parameters and sampling oracles.

Remark 5.6. While we include the term “non-uniform” in the formal definitions of pseudoentropy
(Definition 5.5) and of pseudo-average-min-entropy (PAME, Definition 5.11), throughout the chap-
ter we will be dropping the term “non-uniform” from the name, given that we do not consider the
uniform setting.

A widely-used variant of Shannon’s entropy is what is known as the min-entropy, which turns
out to be the right notion to use in a lot of cryptography applications:
Definition 5.7 (Min-entropy). The min-entropy of a random variable X is defined as

H∞(X) := min
x

{
log
( 1

Pr[X = x]

)}
.

The difference between min-entropy and Shannon entropy (Definition 5.2) is that min-entropy
takes the minimum of the quantity 1/Pr[X = x], whereas Shannon averages this quantity over X.
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We can now obtain the analogue of Definition 5.5 (i.e., the computational analogue of Shannon
entropy) but for min-entropy instead, which is known as pseudo-min-entropy:
Definition 5.8 (Pseudo-min-entropy [HILL99], informal). A distribution X has pseudo-min-entropy
at least k if there exists a distribution Y such that

1. H∞(Y ) ≥ k, where H∞(·) denotes min-entropy;

2. X is indistinguishable from Y .

Hsiao, Lu, and Reyzin considered the conditional version of pseudo-min-entropy known as
pseudo-average-min-entropy, which we will refer to as PAME throughout this chapter [HLR07].
For that, we need to first define average min-entropy:
Definition 5.9 (Average min-entropy [DRS04]). For every joint distribution (X,B), the average
min-entropy of B given X is defined as

H̃∞(C|X) = log
(

1

Ex∼X [1/2H∞(C|X=x)]

)
= log

(
1

Ex∼X [maxa Pr[C = a|X = x]]

)
.

Definition 5.9 corresponds to the conditional version of min-entropy. While there are other ways
of defining the conditional version of entropies, Proposition 5.12 illustrates a very useful property
of average min-entropy.
Definition 5.10 (Pseudo-average-min-entropy (PAME), informal [HLR07]). Let (X,B) be a joint
distribution. We say that B has PAME ≥ k given X if there exists a distribution C jointly
distributed with X such that

1. (X,B) is indistinguishable from (X,C);

2. H̃∞(C|X) ≥ k, where H̃∞(C|X) denotes the average min-entropy of C given X.

As we did in the case of pseudoentropy, we now formalize the notion of PAME in the non-uniform
setting. Then, Definition 5.10 becomes:
Definition 5.11 (Pseudo-average min-entropy (PAME), non-uniform setting [Zhe14]). Let (X,B)

be a joint distribution, let F correspond to circuits of size at most s, and let ϵ > 0. We say that
B has non-uniform (F , ϵ)-pseudo-average min-entropy at least k given X if there exists a random
variable C jointly distributed with X such that the following holds:

1. (X,B) and (X,C) are (F , ϵ)-indistinguishable.

2. H̃∞(C|X) ≥ k.

5.2 The PAME theorem

A known fact about (conditional) min-entropy is the following:

Proposition 5.12 ([DRS04, Proposition 4.10]). For every joint distribution (X,B),

H̃∞(B|X) ≥ k ⇐⇒ Pr[f(X) = B] ≤ 2−k ∀f : {0, 1}n → {0, 1}.
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Figure 5.1: Summary of the correspondence between the information-theoretic notions and their computational analogues.

Proof. The quantity Pr[f(X) = B] is maximized when f outputs the most likely value of B|X=x.
This yields

Pr[f(X) = B] = E
x∼X

[max
a

Pr[B = a|X = x]] = 2−H∞(B|X),

as claimed.

In other words, Proposition 5.12 characterizes the notion of (average) min-entropy in terms of
unpredictability: If B|X has high average min-entropy, then B is hard to predict from X. Moreover,
Proposition 5.12 establishes an equivalence between the two notions, given that it is an if and only
if statement. That is, we can characterize the notion of (average) min-entropy through the notion
of unpredictability and viceversa.

One of the main theorems shown in Vadhan and Zheng [VZ12], which is the central theorem of
this chapter, is the computational analogue of Proposition 5.12. Recall that pseudo-average min-
entropy (PAME) is the computational analogue of average min-entropy, and hence the following
theorem characterizes the notion of pseudo-average min-entropy, instead of average min-entropy,
which is the notion used in Proposition 5.12. (That is, the following theorem is exactly the compu-
tational analogue of Proposition 5.12.)

Before we state Vadhan & Zheng’s PAME theorem, we recall the definition of (F , δ)-weakly
hard from Chapter 4, adapted to the notation of this chapter. Moreover, in what follows, we will
always be working over the domain {0, 1}n × {0, 1}, for n ∈ Z.

Remark 5.13. In the work of Vadhan & Zheng, they work over the domain {0, 1}n×ℓ, where ℓ is of
order O(log(n)), and hence all of their results contain a parameter ℓ [Zhe14; VZ12; VZ13]. However,
for the reasons discussed in Section 5.3, we will be working in the restricted setting where ℓ = 1.
We leave it for future work to generalize our PAME++ theorem (Theorem 5.26 in Section 5.4) to
larger values of ℓ, and we include a discussion at the end about our first steps in this direction.

Definition 5.14 (Hardness of prediction, non-uniform setting [Zhe14, Definition 4.13]). Let (X,B)

be a joint distribution on {0, 1}n × {0, 1}, F any class of functions f : {0, 1}n → {0, 1}, and let
δ > 0. We say that B is non-uniformly (F , δ)-hard to predict given X if

Pr[f(X) = B] ≤ 1− δ.

If Pr[f(X) = B] ≤ 1
2 + ϵ for some ϵ > 0, then we say that g is (F , ϵ)-strongly hard to predict.

We remark that this definition of hardness of prediction generalizes the notion of δ-weakly
hardness that we defined in Chapter 4 (Definition 4.7). In particular, Definition 5.14 corresponds
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to the notion of a function g : {0, 1}n → {0, 1} being δ-weakly hard with respect to a distribution
D on the domain X = {0, 1}n by setting X = D and B = g(X).

We can now state the PAME theorem:

Theorem 5.15 (PAME theorem, informal [Zhe14]). Let (X,B) be a joint distribution on {0, 1}n×
{0, 1} and let r > 0. Then B has PAME ≥ r given X if and only if B is (1− 2−r)-hard to predict
given X.

During this chapter, we will refer to the above theorem as the “PAME theorem”. In other
words, the PAME theorem states an equivalence between having high pseudo-average-min-entropy
and being hard to predict.

The reason that the above theorem is informal is because we are not specifying the class of
distinguishers F . The following theorem is the formalized non-uniform version of Theorem 5.15. In
that case, we separate the if and only if statement into the two directions, given that the parameters
are different in the two directions.

Theorem 5.16 (PAME theorem, non-uniform setting [Zhe14, Theorem 4.15]). Let (X,B) be a
joint distribution on {0, 1}n × {0, 1}, F any class of functions f : {0, 1}n → {0, 1}, and let r, ϵ > 0.
Then, the following two statements hold:

1. If B is non-uniformly (Fpoly(n, 1/ϵ), 1− 2−r)-hard to predict given X, then B has non-uniform
(F , ϵ)-PAME at least r given X.

2. If B has (F , ϵ)-PAME at least r given X, then B is non-uniformly (F , 1 − 2−r − ϵ)-hard to
predict.

We remark that in [VZ12; Zhe14] a similar theorem is proven but using Shannon entropy
instead of min-entropy and finding an equivalence to hardness of sampling (which is quantified
using the Kullback-Leibler divergence) instead of to unpredictability. However, for the purposes of
this chapter, we will only focus on the PAME notion, and we do not further discuss results related
to pseudoentropy.

The key relationship that we are interested in exploring is the one between Impagliazzo’s Hard-
core Lemma (Chapter 4) and the PAME theorem. In his PhD thesis, Zheng explains how we can
understand the PAME theorem as a generalization of Impagliazzo’s Hardcore Lemma, and how
IHCL implies a restricted version of the PAME theorem. In Section 5.3 we describe this implica-
tion, and in Section 5.4 we then use this construction coupled with our IHCL++ from Chapter 4
to obtain our PAME++ theorem.

5.3 Relationship between IHCL and the PAME theorem

The discussion in this subsection is based on Chapter 4 from Zheng’s PhD thesis [Zhe14].
We begin by re-stating Impagliazzo’s Hardcore Lemma (Theorem 4.9 in Chapter 4) with different

notation, in order to match the information-theoretic notation of this chapter:

Theorem 5.17 (IHCL, version in [Zhe14]). Let (X,B) be a joint distribution on {0, 1}n × {0, 1},
F any class of functions f : {0, 1}n → {0, 1}, and let ϵ, δ > 0. Suppose that B is (FO(log(1/δ)/ϵ2), δ)-
hard given X; that is, Pr[f(X) = B] ≤ 1 − δ for all f ∈ F . Then there exists a joint distribution
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(X ′, B′) that is 2δ-dense in (X,B) such that

Pr[f(X ′) = B′] ≤ 1 + ϵ

2

for all f ∈ Ft, where t = s/O(log(1/δ)/ϵ2).

We remark that the above version of the theorem uses the 2δ density optimal parameter (first
shown by Holstein) [Hol05]. Another remark is that Theorem 5.17 is stated in more generality
than how we stated IHCL in Chapter 4: namely, in Chapter 4 we always assumed that the weakly
hardness assumption is with respect to the uniform distribution on the domain, whereas in Theo-
rem 5.17 above we are sampling according to the distribution X in the hardness assumption. In
particular, the IHCL as stated in Theorem 5.17 corresponds to the IHCL formulation that we used
in Chapter 4 by setting X = UX and B = g(X) for our usual function g. (Recall that in this
chapter, we are using X = {0, 1}n, and that UX denotes the uniform distribution over X . Because
X = {0, 1}n, we write UX as Un, since in this case it corresponds to the uniform distribution over
n-bit strings.)

Having established this relationship, the following interpretation of IHCL provides some intu-
ition for why IHCL is related to the PAME theorem:

IHCL (Theorem 5.17) can be interpreted as saying the following: B cannot be predicted
from X with probability > 1− δ if and only if B is indistinguishable from a random bit on
a 2δ fraction of the probability space (X,B).

We now unpack this interpretation of IHCL, explaining how it corresponds to our understanding
and terminology of IHCL from Chapter 4. As we just described, we think of B as our usual
function g; in particular, we can think of it as B = g(X). The distribution X corresponds to
some distribution D over the domain X , where in the IHCL case D corresponds to UX , and in
this chapter X corresponds to {0, 1}n. The class F continues to be the set of distinguishers f .
Saying that “B cannot be predicted from X with probability > 1− δ” corresponds to saying that
Pr[f(X) = B] ≤ 1 − δ for all f ∈ F . Lastly, the subset of the of the domain in which B is
indistinguishable from a random bit corresponds to what we called the hardcore set in Chapter 4.
Being indistinguishable from a random bit corresponds to the notion of strong hardness from
Chapter 4. This matches exactly the intuitive explanation that we provided for the conclusion of
the IHCL in Chapter 4: we described how inside the hardcore set, function g behaves like a random
boolean function, because the distinguishers cannot guess the outputs of g with probability larger
than 1/2 (plus ϵ slack). This is the same idea as saying that g is behaving like a random bit.

Before we describe how Impagliazzo’s Hardcore Lemma implies a restricted version of the PAME
theorem, a preliminary question that arises is the following: How can we speak of the equivalence
of these two theorems if the PAME theorem is an “if and only if” statement while IHCL is not?
The reason behind this discrepancy is that IHCL could be stated as an if and only if statement;
however, one of the directions is never included in the IHCL statement because it follows trivially
from definition. This corresponds to the implication: If there exists a hardcore set S of density 2δ

over which g is strongly hard, then g is δ-weakly hard on average.
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Where is the notion of pseudo-average min-entropy (PAME) in the IHCL statement?
The next natural question is: where does the notion of pseudo-average-min-entropy appear in the
IHCL statement? By Proposition 5.12, we know that when F corresponds to the set of all functions
f : {0, 1}n → {0, 1}, then Pr[f(X) = b] ≤ 2−k is equivalent to H̃∞(B|X) ≥ k. In this case,

k = log
( 1

1− δ

)
,

since then

2
− log

( 1

1− δ

)
= 2log(1−δ) = 1− δ.

Therefore, the assumption that B is (F , δ)-hard to predict given X implies that

H̃∞(B|X) ≥ log
( 1

1− δ

)
.

After having gained some intuition on the underlying relationship between IHCL and the PAME
theorem we will now prove the following, which corresponds to one of the two directions stated in
Theorem 5.16 (and the direction we are interested in for our purposes):

Theorem 5.18 (PAME theorem, restricted version, informal). Let (Un, g(Un)) be a joint distribu-
tion on {0, 1}n × {0, 1}. Then B has PAME ≥ r given X if and only if B is (1 − 2−r)-hard to
predict given X.

Remark 5.19. We will now show how the ICHL (Theorem 4.9 from Chapter 4) implies PAME
(Theorem 5.16) when setting X = Un, B = g(X). As we just described, the IHCL stated in
Theorem 5.17 is more general, and so the implication that IHCL implies PAME still holds for
general (X,B). However, we restrict it to the case X = Un, B = g(X) because our goal is to use
the IHCL++ theorem from Chapter 4 to obtain PAME++. Still, the proof that we present is not
restricted to the case X = Un, B = g(X), and so in future work we could also begin by writing
IHCL++ for (B,X) instead.

As we have discussed, one direction of Theorem 5.18 is trivial. Therefore, following the ideas
outlined in [Zhe14, Ch. 4], we prove the following, which corresponds to the second statement in
Theorem 5.16 above:

Theorem 5.20 (Restricted PAME, one direction, non-uniform setting). Let F be any class
of functions f : {0, 1}n → {0, 1}, let ϵ, δ > 0, and let (X,B) be a joint distribution on
{0, 1}n × {0, 1} where X = Un and B = g(X) for some (Fpoly(n,1/ϵ), δ)-weakly hard function
g. Then, B has non-uniform (F , ϵ)-PAME ≥ log(1/(1− δ)) given X.

Proof. The intuition for the proof is as follows: Because function g is δ-weakly hard by assumption,
we can apply IHCL to g to obtain a hardcore set H in X = {0, 1}n. Then, we define a distribution
(X,C) based on the hardcore set H, which we can show has enough average min-entropy. Intuitively,
this is a sensible approach precisely because a hardcore set is related to the notion of unpredictability.
That is, within the hardcore set, g behaves like a random function. It is then natural to expect this
unpredictability to yield high min-entropy when we define a distribution based on the hardcore set.
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By assumption, g is (Fpoly(n, 1/ϵ), δ)-weakly hard. By definition, this implies that

Pr
x∼X

[f(x) = g(x)] ≤ 1− δ ∀f ∈ Fpoly(n, 1/ϵ),

given that B = g(X). Then, by IHCL (Theorem 4.9), this implies that there exists a hardcore set
H ⊆ {0, 1}n with |H| ≥ 2δ · 2n (i.e., with density ≥ 2δ, given that here |X | = 2n) with respect to
the class Fpoly(n, 1/ϵ).

Construction of a distribution with high PAME given a hardcore set. Next, we define
(X,C) using the hardcore set H as follows. Given X = x,

C(x) :=

{
{0, 1} each with probability 1/2, if x ∈ H,

g(x), if x /∈ H.
(5.21)

In other words, the first case corresponds to returning a uniform random bit. Then, we claim the
following:

Claim 5.22. H̃∞(C|X) ≥ log
( 1

1− δ

)
.

Proof. In order to prove this, we use the original definition of average min-entropy (Definition 5.9).
Namely, recall that

H̃∞(C|X) := log
(

1

Ex∼X [1/2H∞(C|X=x)]

)
.

When x ∈ H, then H∞(C|X=x) = 1, given that C(x) is a random bit (by 5.21). When x /∈ H,
then H∞(C|X=x) = 0, given that C(x) = g(x) (by 5.21), and g is a deterministic function by
assumption.

Then,
E

x∼X

[
1/2H∞(C|X=x)

]
= 2δ · 1

2
+ (1− 2δ) = 1− δ.

Therefore,

H̃∞(C|X) = log
(

1

Ex∼X [1/2H∞(C|X=x)]

)
= log

(
1

1− δ

)
,

as required.

Next, we show that:

Claim 5.23. (X,B) and (X,C) are (F , ϵ)-indistinguishable.

Proof. As in Claim 5.22, we consider the cases x ∈ H and x /∈ H separately. When x ∈ H, then
by definition of C, C is a uniform random bit. Since B is δ-weakly hard by assumption, the IHCL
implies that B is also (Ft, ϵ)-strongly hard over H. Therefore, by definition of strong hardness,
(X,B) and (X,C) are (Ft, ϵ)-indistinguishable inside H.

When x /∈ H, by definition of C it follows that C(x) = g(x). Since B = g(X) by assumption,
C equals B outside of H, and hence trivially (X,B) and (X,C) are (Ft, ϵ)-indistinguishable since
they are, in fact, equal to each other.
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Hence, since (X,B) and (X,C) are (Ft, ϵ)-indistinguishable both inside and outside of the
hardcore set H, it follows that (X,B) and (X,C) are (Ft, ϵ)-indistinguishable over the entire
domain, as we wanted to show.

By definition of PAME (Definition 5.10), Claims 5.22 and 5.23 together imply the following:

Corollary 5.24. B has (non-uniform) (Ft, ϵ)-PAME ≥ log(1/(1− δ)) given X.

Proof. By definition of (Ft, ϵ)-PAME, we need to show that there exists a random variable C

jointly distributed with X such that (1) H̃(C|X) ≥ k, and (2) (X,B) and (X,C) are (Ft, ϵ)-
indistinguishable. By letting C be the random variable defined in Equation 5.21, it follows that
Condition (1) is fulfilled by Claim 5.22 and Condition (2) is fulfilled by Claim 5.23.

This concludes the proof of Theorem 5.20.

5.4 Our proposed PAME++

Given the relationship between IHCL and PAME that we just explored in Section 5.3, we return
to the main underlying question of this thesis: Given that a multiaccurate predictor implies IHCL
(as shown in Chapter 4), and given that we just showed that IHCL implies (a restricted version
of) the PAME theorem, if we begin with a multicalibrated predictor instead, what stronger (++)
version of PAME do we obtain? To do so, we will use our IHCL++ theorem from Chapter 4, and
plug it into the reduction from IHCL to PAME that we just showed.

Given our goal, let us recall our proposed IHCL++ (set version) from Chapter 4 (Theorem 4.11):

Theorem 5.25 (IHCL++, Set version). Let X be a finite domain, let F be a family of
functions f : X → {0, 1}, let g : X → {0, 1} be an arbitrary function, let ϵ, γ > 0. There
exists a partition P ∈ Ft,q,k of X with t = O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2), k = O(1/ϵ)

which satisfies that for all P ∈ P such that ηp ≥ γ and such that |F| ≤ 1
10 exp(2|X |ϵ2k2p),

there exists a set Hp ⊆ P of density |Hp|/|P | ≥ 2kp such that Hp is an (F , ϵ/kp)-hardcore
set for g. That is,

∀f ∈ F , Pr
x∈Hp

[f(x) = g(x)] ≤ 1

2
+

ϵ

kp
.

Recall from Chapter 4 that ηp corresponds to the size parameter of P ∈ P and kp corresponds
to the balance of g on P . The idea on how to go from IHCL++ to PAME++ is that, for every
hard-core set Hp, we can build a joint distribution with high PAME in the larger set where the
hardcore set is contained. This is what enabled us to prove Theorem 5.20 as well, now replicated
to each set P ∈ P . Following this intuition, we propose the following original PAME++ theorem:
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Theorem 5.26 (PAME++). Let F be any class of functions, let (X,B) be a joint distri-
bution on {0, 1}n × {0, 1} where X = Un and B = g(X) for an arbitrary boolean function g,
and let ϵ, γ > 0. There exists a partition P ∈ Ft,q,k of X with t = O(1/(ϵ4γ) · log(|X |/ϵ)),
q = O(1/ϵ2), k = O(1/ϵ) which satisfies that for all P ∈ P such that ηp ≥ γ, B|P has
non-uniform (F , ϵ/kp)-PAME at least log(1/(1 − kp)) = H∞(g(Up)) given X|P , where B|P
denotes the restriction of B on P and X|P the restriction of X on P .

Remark 5.27. For simplicity in the argument, we use the set version of IHCL++. However,
PAME++ can be shown directly using the measure version of IHCL++, which is why we drop the
assumption parameters on |F| in the statement of PAME++.

Proof. We follow the proof strategy for Theorem 5.20. Recall that vp = Ex∈P [g(x)], and kp =

min{vp, 1 − vp}. By the ICHL++ (Theorem 5.25), we know that there exists a partition P of X
satisfying that for all P ∈ P such that ηp ≥ γ, there exists a set Hp ⊆ P of density |Hp|/|P | ≥ 2kp
such that, for all f ∈ F ,

Pr
x∼Hp

[f(x) = g(x)] ≤ 1/2 +
ϵ

kp
.

For each P ∈ P , we define a joint distribution (Xp, Cp) on the domain P ×{0, 1} as follows. Given
Xp = x,

Cp(x) =

{
{0, 1} each with Pr = 1/2, if x ∈ Hp,

g(x), if x /∈ Hp.

Then, as in the proof of Theorem 5.20, we show the following analogous two claims:

Claim 5.28. H̃∞(Cp|Xp) ≥ log
( 1

1− kp

)
.

Proof. This follows analogously to the proof of Claim 5.22, by using the restriction Cp instead of
C and Xp instead of X.

Claim 5.29. (Xp, Cp) and (X|P , B|P ) are (F , ϵ/kp)-indistinguishable.

Proof. This follows directly by the proof of Claim 5.23, by using Cp instead of C, Xp = X|P
instead of X, and B|P instead of B. That is, if x ∈ Hp, then by IHCL++ we know that g is
(F , ϵ/kp)-strongly hard on Hp. Therefore, (Xp, Cp) and (X|P , B|P ) are (F , ϵ/kp)-indistinguishable.
When x /∈ Hp, the two joint distributions are equal to each other, and hence they are also (F , ϵ/kp)-
indistinguishable.

We remark that Xp and X|P are equivalent by definition. Together, by the definition of PAME
(Definition 5.11, Claims 5.28 and 5.29 imply the following:

Corollary 5.30. B|P has (non-uniform)
(
Ft, ϵ/kp

)
-PAME ≥ log(1/(1− kp)) given X|P .

Having shown Claim 5.30, we now justify the simplifications to the expression log(1/(1 − kp)).
First, we show that

log
(

1

1− kp

)
= log

( 1

2−H∞(g(Up))

)
.
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We recall that X = Un, where Un denotes the uniform distribution over X = {0, 1}n (i.e., over
n-bit strings). Hence, within a level set P , we have that X|P = UP , where UP denotes the uniform
distribution over P . Then,

1− kp = 1−min{Ex∈P [g(x)], 1− Ex∈P [g(x)]} = 1−min{Pr[g(Up) = 1],Pr[g(Up) = 0]}

= max{Pr[g(Up) = 0],Pr[g(Up) = 1]} = 2−H∞(g(Up)),

where the last equality follows from the definition of min-entropy (Definition 5.7). Then,

log
( 1

2−H∞(g(Up))

)
= log

(
2H∞(g(Up))

)
= H∞(g(Up)).

This matches the expression stated in Theorem 5.26.

We remark that although we are proving PAME++ using IHCL++, recall that we used an
approximate multicalibrated partition P to prove IHCL++. Therefore, the partition P that proves
the PAME++ theorem is an approximate multicalibrated partition, which is the fundamental idea
behind the theorem.

5.4.1 Recovering the original PAME++ from PAME

Similar to how we proceeded in Chapter 4, we now show how to recover the original PAME theorem
using PAME++. As in the case of IHCL++, the key idea is to “glue” together the sets P ∈ P
that have enough size and are balanced enough. Namely, such that ηp and kp are larger than some
threshold. Recall the definition of a “good” P ∈ P from Chapter 4: we say that a set P ∈ P is
(γ, τ)-good for some γ, τ > 0 if ηp ≥ γ and kp ≥ τ . Recall that in the original PAME theorem
(Theorem 5.20) we are assuming that g is δ-weakly hard, unlike in the PAME++ statement.

Proof of PAME using PAME++. Let F ,X , ϵ, δ be the assumption parameters in PAME. We define
the parameters ϵ′ := ϵ2δ, γ := ϵϵ′, and invoke the PAME++ theorem with these parameters ϵ′, γ.
By PAME++, we obtain a partition P ∈ Ft,q,k of X with t = O(1/(ϵ′4γ) · log(|X |/ϵ′)), q = O(1/ϵ′2),
k = O(1/ϵ′) such that, for each P ∈ P where ηp ≥ γ = ϵϵ′, B|P has non-uniform (F , ϵ′/kp)-PAME
at least log(1/(1− kp)) = H∞(g(UP )) given X|P .

Let τ := ϵδ. By Proposition 4.12 from Chapter 4 we know that

E
P∼P

[kp · 1G(P )] ≥ δ · (1−O(ϵ)).

In order to prove the PAME theorem, we need to show that B has (F , α)-PAME at least equal
to log(1/(1 − δ)) given X. To do so, by definition of PAME, we need to show that there exists a
distribution C jointly distributed with X such that (1) H̃∞(C|X) ≥ log(1/(1− δ)), and (2) (X,B)

and (X,C) are (F , α)-indistinguishable.
As we did in Chapter 4, we construct such a C by doing “gluing together” the distributions CP

obtained from invoking the PAME++ theorem such that P is good. Namely, for each P ∈ P , let
CP be distributed as CP . Then, we define the distribution C on X as

C(x) = CP (x) · 1G(P ).
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Let C correspond to the random variable distributed as C; i.e., C ∼ C. By the PAME++ theorem,
we know that for all P ∈ P such that ηp ≥ γ,

H̃∞(Cp|Xp) ≥ log
( 1

1− kp

)
.

Hence, by the definition of C and by applying the bound EP∼P [kp · 1G(P )] ≥ δ · (1 − O(ϵ)), it
follows that

H̃∞(C|X) ≥ log
( 1

1− δ · (1−O(ϵ))

)
.

Similarly, by the PAME++ theorem we know that every joint distribution (Xp, Cp) is (F , ϵ′/kp)-
indistinguishable from (X|P , B|P ) for each P ∈ P such that ηp ≥ γ. Therefore, since in Chapter 4
we showed that

E
P∼P

[
ϵ′

kp

]
≤ ϵ′/τ = ϵ,

it follows that, by definition of C, distributions (X,C) and (X,B) are (F , ϵ)-indistinguishable.
Putting the two facts together, by definition of PAME (Definition 5.11), it follows that B has

non-uniform (F , ϵ)-PAME at least

log
( 1

1− δ · (1−O(ϵ))

)
.

As we explained in Chapter 4, it is possible to modify the distribution C to achieve the lower bound
log(1/(1−δ)) on the PAME of B while changing the indistinguishability parameter between (X,C)

and (X,B) by at most O(ϵ). Hence, this proves the PAME theorem (Theorem 5.16).
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6
Dense Model Theorem

A theorem of Green, Tao, and Ziegler can be stated (roughly) as follows: if R is a
pseudorandom set, and D is a dense subset of R, then D may be modeled by a set M
that is dense in the entire domain such that D and M are indistinguishable.

Reingold et al. [RTTV08]

The Dense Model Theorem (DMT) is a result from additive combinatorics that states the
following [TTV09]: Let R be a pseudorandom subset of a set X , which can be very sparse, and let
D ⊆ R such that |D| ≤ δ|R|. Then, there exists a model set M ⊆ X such that |M | ≥ δ|X| (i.e., M
is dense) and M is indistinguishable from D. This is why M is called a dense model for D. When
formalizing these definitions below, we will see that the model for D corresponds to a measure.

The original proof follows a potential energy argument with via iterative partitioning, similar
to the proofs of the statements that we described in Chapter 3. In [RTTV08], they prove the DMT
via this same approach, and also provide a new proof of Impagliazzo’s Hardcore Lemma using the
iterative partitioning argument as well.

One of the key motivations for the Dense Model Theorem is that it is one of the crucial proof
components used in Green and Tao’s famous result that there exist arbitrarily long arithmetic
progressions of primes [GT08]. In their setting, X corresponds to Z, R corresponds to a “pseudo-
random” set of integers, and D is a subset of constant density within R. Then, by using the Dense
Model Theorem and Szemerédi’s theorem for arithmetic progressions, they show that D contains
arbitrarily long arithmetic progressions. Then, they show that there is a set R of integers that
is pseudorandom and such that the primes have constant density inside R, which allows them to
conclude the proof of the Green-Tao theorem. We explore some of these connections in Chapter 6,
but for now, this provides an important motivational reason for studying the Dense Model Theo-
rem. We remark that in this chapter we use a slightly different formulation of the Dense Model
Theorem, but we will describe how it implies the version of the DMT that we just presented in the
opening of this chapter. A more general Dense Model Theorem was later proven by Tao and Ziegler
[TZ08], which generalized it to other domains. Gowers [Gow10] and Reingold et al. [RTTV08] later
provided a simplified proof using an iterative partitioning argument.
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6.1 Definitions

In order to state the DMT, we will need the following definitions.
As usual, we use D to denote a probability distribution over a finite domain X and F to denote

a class of boolean distinguisher tests f on X . As in the rest of this thesis, F is always assumed to
contain the constant functions and is closed under complement (Remarks 2.2, 2.3).
Definition 6.1. Given a function f ∈ F and a probability distribution D over X , we define f [D]
as

f [D] := Pr
x∼D

[f(x) = 1].

Definition 6.2 (Indistinguishable distributions). Given a class F of functions f : X → {0, 1} and
two distributions D1, D2 on X , we say that D1 and D2 are (F , ϵ)-indistinguishable if, for all f ∈ F ,

|f [D1]− f [D2]| < ϵ.

Equivalently (by Definition 6.1), if∣∣∣ Pr
x∼D1

[f(x) = 1]− Pr
x∼D2

[f(x) = 1
∣∣∣ ≤ ϵ.

Definition 6.3 (Pseudorandom). A distribution D on X is (F , ϵ)-pseudorandom if it is (F , ϵ)-
indistinguishable form the uniform distribution on X (i.e., from UX ).

In Chapter 4, we defined the density of a measure and of a set. However, we implicitly defined
the two terms with respect to the distribution D = UX over X . We now re-state Definitions 4.5
and 4.6 for an arbitrary distribution D over X .
Definition 6.4 (Density of a measure). Given a distribution D over X , a measure µ is a map from
X to [0, 1] with density

d(µ) =
∑
x∈X

µ(x)D(x) = E
x∼D

[µ(x)].

A measure µ of positive density induces a distribution

Dµ(x) =
µ(x)D(x)

d(µ)
.

Recall from Chapter 4 that every set S ⊆ X has a corresponding measure given by the associated
characteristic function χS . Then, the density of a subset S is just the probability mass endowed to
S by distribution D. Hence a set S also induces a distribution, denoted by DS .
Definition 6.5 (Density of a set). Given a distribution D over X , the density of a set S ⊆ in D is
given by

d(S) =
∑
x∈S
D(x) = Pr

x∼D
[x ∈ S].

Definition 6.6. Given a class F of functions f : X → {0, 1} and a measure µ on X ,

f [µ] := f [Dµ],

where Dµ denotes the distribution induced by µ.
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Hence, for a set S ⊆ X ,
f [S] = Pr[f(x) = 1 | x ∈ S],

since we identify S with the conditional distribution given x ∈ S. We can similar refer to f [X ].
Definition 6.7 (ϵ-model [Imp09]). Given a class F of functions on X , a measure µ on X , a set
S ⊆ X , and ϵ > 0, we say that µ is an (F , ϵ)-model for S if DS and Dµ are (F , ϵ)-indistinguishable.

If S has density δ in D, then for every f : X → {0, 1} the following holds:

Pr
x∼D

[f(x) = 1] ≥ Pr
x∼D

[x ∈ S] · Pr[f(x) = 1 | x ∈ S] = δ · Pr
x∼DS

[f(x) = 1].

This motivates the definition of pseudodensity, which thus relaxes the notion of density:
Definition 6.8 (Pseudodensity [Imp09]). Given a class F of functions on X , a distribution D on
X , a set S ⊆ X , and ϵ, δ > 0, we say that S is (F , ϵ, δ)-pseudodense in D if for all f ∈ F ,

Pr
x∼D

[f(x) = 1] ≥ δ · Pr
x∼DS

[f(x) = 1]− ϵ.

Since pseudodensity is a relaxation of density, we can think of pseudodensity as saying that the
distinguishers f ∈ F cannot tell whether S small (i.e., has low density). As we showed above, if S
is δ-dense, then S is (ϵ, δ)-pseudodense. But another way for S to be pseudodense is the following:
If there is a measure µ that is indistinguishable from S by F and such that µ is δ-dense [Lee17].
The Dense Model Theorem precisely states that we can always find such a µ. Hence, the interesting
case is when d(S)≪ d(µ), because then the DMT states that, even if S is very small, we can find
a measure of large density that is indistinguishable from S to F .

Recall that in Chapter 4, the assumption and the conclusion of IHCL dealt with a different
class of distinguishers. Namely, in IHCL, the δ-weakly hardness of g is with respect to the enlarged
class Fs (which includes all functions with complexity at most s relative to F), whereas the strong
hardness conclusion of g is with respect to F . In the case of the Dense Model Theorem, we have
a similar phenomenon, where the pseudodensity assumption of a set S is with respect an enlarged
class of distinguishers, whereas the conclusion is with respect to the original class F . In this case,
the enlarged class of distinguishers is different than that in Chapter 4, which is defined as follows:

The DMT version that we use requires the following notation:
Definition 6.9 ([Imp09]). Given a class F of functions f : X → {0, 1} and an integer m, the class
Fm is defined as

Fm := {Majj(f1, . . . , fj) | fi ∈ F ; 1 ≤ j ≤ m},

where Majj(g1, . . . , gj) denotes the function that outputs 1 if at least ⌈j/2⌉ of the gi’s output 1.
“Maj” stands for “majority”, since the definition of Majj corresponds to taking the majority

vote of j functions. Therefore, Fm corresponds to the class of distinguishers that are obtained by
taking the majority vote for up to m functions from the class F .

We can now state the Dense Model Theorem.
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Theorem 6.10 (DMT, [Imp09, Thm. 3], [RTTV08]). Let X be a finite domain, let F be a
family of functions f : X → {0, 1}, and ϵ, δ > 0. Then there exists an m = poly(1/ϵ, 1/δ)
such that if any set S ⊆ X is (Fm, ϵ, δ)-pseudodense in UX , then there exists a (δ − O(ϵ))-
dense measure µ such that µ is an (F , O(ϵ/δ))-model for S.

(This formulation of the DMT implies the one that we used to describe DMT informally at the
beginning of this chapter by the definition of pseudorandomness; see [Imp08].)

Therefore, in order to prove the DMT, we need to construct a measure µ such that:

1. (Density) µ has density δ −O(ϵ).

2. (Indistinguishability) Dµ and DS are O(ϵ/δ)-indistinguishable with respect to F (by definition
of a model; Definition 6.7).

Similarities to Impagliazzo’s Hardcore Lemma. The Dense Model Theorem shares many
similarities to Impagliazzo’s Hardcore Lemma (Chapter 4). We highlight some of their parallels,
which also apply to their ++ counter-parts, as we will see with our DMT++ statement.

1. The assumption. In IHCL, we assume that the function g is (Fs, δ)-weakly hard. In DMT,
we assume that the S is (Fm, ϵ, δ)-pseudodense.

2. The density. In IHCL, we want to ensure that the hardcore measure µ is dense enough;
more concretely, 2δ-dense. In DMT, we want to ensure that the model µ is dense enough;
more concretely, (δ −O(ϵ))-dense.

3. Indistinguishability. In IHCL, we need to ensure that g is strongly hard when sampling
according to µ, which means that g behaves like a random function. In DMT, we want the
model µ to be indistinguishable from S.

6.2 Proving the DMT using IHCL

As we would guess from the previous similarities, we would hope to prove the DMT using the IHCL.
The reason we are interested in proving the DMT through the IHCL is because, per the goal of
this thesis, we want to find the right generalization for DMT++. Given our IHCL++ theorem
in Chapter 4, (Theorem 4.11), we could then use the ICHL-DMT correspondence to establish an
equivalent IHCL++-DMT++ correspondence.

Although we actually obtain our DMT++ theorem directly from a multicalibrated partition,
rather than through IHCL, we used ideas from the proof that IHCL implies DMT in our DMT++

statement. Moreover, this implication is not formalized in the literature, although it is sketched in
several drafts and workshop notes by Impagliazzo. For these two reasons, we believe it is of interest
to formalize how IHCL implies the DMT.

This formalization is based on the proofs provided in [Imp08; Imp09; Lee17; GIK12].

Intuitive idea. The general idea behind the reduction is as follows: in order to be able to apply
IHCL in the DMT setting, we need a function g, given that there are no functions in the DMT
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statement (besides the distinguishers); only sets. The natural way to obtain a function is to take g

to be the characteristic function of the set S (i.e., g(x) returns 1 if and only if x ∈ S, so g := χS).
Then, we would show that because S is (ϵ, δ)-dense by assumption, this implies that g is δ-

weakly hard. We can then apply IHCL to g to obtain a hardcore measure µ. Lastly, we build
a dense model µ′ from µ: the strong hardness condition of g on µ guarantees that µ′ and S are
indistinguishable, and the fact that µ is δ-dense guarantees that µ′ is dense enough.

Figure 6.1: Using IHCL to prove DMT, simplified.

Magnifying S. While this is the right intuitive idea behind the reduction, a problem that arises is
that we are usually interested in the setting where S is very small. That is, as we explained above,
the interesting applications of DMT occur when d(S) ≪ d(µ), yet µ is a model for S. But if S is
very small, then the characteristic function of S can be approximated by the constant 0 function.
In order to avoid this, the key idea by Impagliazzo in [Imp08; Imp09; Lee17; GIK12] is to magnify
S so that we ensure that we sample from S with some constant probability δ′. In particular, we
will need to set δ′ = δ/(1 + δ).

To do so, we first augment the original domain X as follows. Let X be the initial domain and
S the (Fm, ϵ, δ)-pseudodense set in X given in the DMT++ statement. From X , we build the sets

VS = {(1, x) | x ∈ S},

VU = {(0, x) | x ∈ X \ S}.

We then construct the augmented domain V as

V = VS ∪ VU .

We remark that this is not what is magnifying S, given that the elements in V correspond exactly
to the elements in U , except that we have “tagged” them with a 0 or 1 bit in order to indicate
whether they are coming from S or from X . This “tag” is just useful for defining the class of
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distinguishers F and the function g. However, the number of elements in the domain V is exactly
equal to the number of elements in the domain X . The magnification of S instead comes from the
distribution that we will specify on V .

We think of the class F as the set of functions f : V → {0, 1} such that they ignore the first
bit of the input. That is, given an arbitrary class of distinguishers F ′ on X , we build the class
F on V as follows. For each f ′ ∈ F ′ and x = b ◦ x′ ∈ V , where x′ ∈ X and b ∈ {0, 1}, we add
the corresponding function f to F : f(x) := f ′(x′). (The symbol ◦ denotes the composition of two
strings.)

Next, we define the following function g:

g(b, x) = b.

That is, g distinguishes which part of V does x come from: VS or VU? Since b = 1 if x ∈ S and
b = 0 if x ∈ U , the output of g corresponds indicates exactly the set that x belongs to.

The key idea behind the proof that IHCL implies the DMT, which we will now develop, is as
follows: because S has large pseudo-density and the distinguishers ignore the first bit, they will
not be able to distinguish where the input comes from (VS or VU ), and so they “find it hard” to
compute g. Formally, we first show that g is indeed weakly hard to compute on average, in the
IHCL sense.

Remark 6.11. In Chapter 4, we always applied the definition of δ-weakly hardness with respect to
the uniform distribution X . In this chapter, we will use the notion of δ-weakly hardness with respect
to an arbitrary distribution D over X . That is, we are interested the quantity Prx∼D[f(x) = g(x)]

rather than the particular case of Prx∼UX [f(x) = g(x)].

Step 1: g(b, x) = b is weakly hard to compute. Let δ correspond to the parameter in the
DMT statement (Theorem 6.10). We define the following distribution W on V generated by the
following process:

• With probability δ′ =
δ

1 + δ
, sample uniformly from VS .

• With probability (1− δ′), sample uniformly from VU .

That is, first we choose one of VS or VU according to the δ′ parameter. Then, conditioned
on being inside either VS or VU , we pick an element x uniformly. This definition of W is what
“magnifies S” in the sense that we described. That is, the definition of W ensures precisely that
the probability that the element x picked by W comes from S is δ′; hence, we are sampling from S

with constant probability δ′ [Imp09].

Claim 6.12. The function g is (Fm, δ′ − (1− δ′)ϵ)-weakly hard with respect to distribution W.

Proof. For the sake of contradiction, assume that

Pr
x∼D

[f(x) = g(x)] > 1− δ′ + ϵ(1− δ′) = (1− δ′)(1 + ϵ)

for some f ∈ Fm. We want to show that this violates the pseudodensity assumption on S. Let us
develop the LHS: When do the functions f(x) and g(x) agree? This can only occur in two ways:
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1. x comes from S and f(x) = 1: Because VS appends 1 in front and g(b, x) = b, g(x) will also
be 1.

2. x comes from U and f(x) = 0: Because VU appends 0 in front and g(b, x) = b, g(x) will also
be 0.

Now we compute the success probability for each of these two events:

1. The probability that x comes from S is δ′. Hence, the probability that f returns 1 is

δ′ · Pr
x∈S

[f(x) = 1].

2. The probability that x comes from U is 1− δ′. Probability that f returns 0 is

1− Pr
x∈U

[g(x) = 1].

Hence,
Pr

x∼W
[f(x) = g(x)] = δ′ · Pr

x∈S
[f(x) = 1] + (1− δ′)(1− Pr

x∈U
[f(x) = 1]).

By plugging in the statement that we are assuming by contradiction, it follows that

Pr
x∼W

[f(x) = g(x)] = δ′ Pr
x∈S

[f(x) = 1]+(1−δ′)(1− Pr
x∈U

[f(x) = 1]) > 1−δ′+ϵ(1−δ′) = (1−δ′)(1+ϵ).

By dividing by (1− δ′), we obtain

δ′

1− δ′
· Pr
x∈S

[f(x) = 1] +
1− δ′

1− δ′
· (1− Pr

x∈S
[f(x) = 1]) > 1 + ϵ.

Since by definition δ′ := δ/(1+δ), it follows that δ = δ′/(1−δ′). Therefore, the expression simplifies
to

δ Pr
x∈S

[f(x) = 1] + 1− Pr
x∈S

[f(x) = 1] > 1 + ϵ.

(Notice that δ′ is chosen as δ/(1 + δ) precisely so that we obtain this simplification.) Re-arranging
sides,

Pr
x∈U

[f(x) = 1] < δ Pr
x∈S

[f(x) = 1]− ϵ.

This contradicts the assumption that S is (Fm, ϵ, δ)-pseudodense in UX .

Step 2: Apply IHCL. Since we have shown that g is weakly hard, we can now apply IHCL to g

to get a hardcore measure (with optimal density 2δ).

Remark 6.13. In this proof, given that g is weakly hard with respect to distribution W, rather
than with respect to the uniform distribution UV , we need to use a slightly more generalized version
of IHCL than the one we stated in Chapter 4. The statement is exactly the same one as IHCL,
except that the weakly hardness assumption is with respect to an arbitrary distribution W on V

rather than only UV . See, e.g., Theorem 6 in [Imp09]. Notice that this matches the version of IHCL
that we stated in Chapter 5 (Theorem 5.17), where the weakly hardness assumption was also with
respect to an arbitrary distribution.
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Specifically, given our parameters above, we get:

Claim 6.14. There exists a measure µ over V of density 2δ′ − 2ϵ(1 − δ′) with respect to the
distribution W, such that g is (F , ϵδ′/4)-hardcore.

Proof. This follows direclty from applying IHCL (Theorem 4.9), where the weakly hardness as-
sumption is with respect to W instead of UV .

Step 3: Proof of the density of the model. Let µ correspond to the measure from Claim 6.14.
Let µS denote the restriction of µ on S and likewise let µU denote the restriction of µ on U . By the
definition of the distribution W and by the lower bound on the density of µ given by Claim 6.14
(which is given by IHCL), it follows that

Using the bound on the density of µ:

d(µ) = δ′d(µS) + (1− δ′)d(µU ) ≥ 2δ′ − 2(1− δ′)ϵ. (6.15)

We will now show that µU corresponds to the measure that we are looking for; i.e., that µU is
a model for S (thus proving the DMT). Intuitively, splitting d(µ) into δ′d(µS) and (1 − δ′)d(µU )

is a way of “recovering uniformity”: namely, by the DMT statement, the pseudodensity of S is
with respect to the uniform distribution on the domain. The density of µS is with respect to the
uniform distribution on S, and the density of µU is with respect to the uniform distribution on U .
Hence, this splitting of d(µ) “reverts” the non-uniformity introduced by the distribution W, which
allows us to prove that µU is a dense measure with respect to the uniform distribution. Indeed:

Claim 6.16. µU is a (δ −O(ϵ))-dense measure on U with respect to the uniform distribution.

Proof. The intuition behind this is as follows: in order for µ to be a hardcore set, it must be split
approximately evenly between U and S (up to an ϵ slack); otherwise, we could have an advantage
by predicting the constant 0 or 1 value. That is, by definition of a hardcore set:∣∣∣ Pr

(b,x)∼Dµ

[g(b, x) = 0]− 1/2
∣∣∣ ≤ ϵδ′/4,

∣∣∣ Pr
(b,x)∼Dµ

[g(b, x) = 1]− 1/2
∣∣∣ ≤ ϵδ′/4,

where b ∈ {0, 1}. This is because the constant functions 0 and 1 are in F (Remark 2.2). Hence, the
1/2 term in the two expressions above corresponds to how well we would do if we were predicting
with the constant function. Hence, by adding together the two expressions together, we obtain that∣∣∣ Pr

(b,x)∼Dµ

[g(b, x) = 1]− Pr
(b,x)∼Dµ

[g(b, x) = 0]
∣∣∣ ≤ ϵδ′/2.

Hence, ∣∣∣δ′d(µS)− (1− δ′)d(µU )
∣∣∣ ≤ ϵδ′d(µ)/2 ≤ ϵδ′/2. (6.17)

Solving for Equations 6.15 and 6.17, we obtain that

d(µS) ≥ 1−O(ϵ/δ),
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d(µU ) ≥ δ −O(ϵ).

Therefore, the measure µU has density at least δ −O(ϵ), as we wanted to show.

Lastly, to conclude the proof of the DMT (Theorem 6.10), we need to show that µU is a good
model for S.

Step 4: Proof of the indistinguishabilty of the model. Formally, we want to show:

Claim 6.18. The measure µU is an O(F , ϵ/δ)-model for S.

By definition of a model, this corresponds to showing that DS and DµU are (F , ϵ/δ)-indistinguish-
able.

Proof. First, recall that d(µS) ≥ 1−O(ϵ/δ). We claim that this implies that DµS and the uniform
distribution on S are statistically close: namely, their statistical distance is at most O(ϵ/δ). This
is because we can write DµS as a convex combination of the uniform distributions on sets A of size
d(µX )|S|. Since each such distribution has statistical distance

2(1− |A|/|S|) = 2(1− d(µS)) = O(ϵ/δ),

the same is true for DµS [Imp09]. Therefore, for each f ∈ F ,∣∣∣ Pr
x∼S

[f(x) = 1]− Pr
x∼DµU

[f(x) = 1]
∣∣∣ ≤ O(ϵ/δ) +

∣∣∣ Pr
x∼DµS

[f(x) = 1]− Pr
x∼DµU

[f(x) = 1]
∣∣∣.

Now we need to show that the RHS is small, to conclude that the distinguishers f ∈ F cannot
know distinguish whether x has been sampled from DµS or from DµU , which corresponds exactly
to the notion of indistinguishability. Since g is (F , ϵδ′/4)-hardcore by Claim 6.14, it follows that

1

2
+ϵδ′/4 ≥ Pr

x∼Dµ

[g(b, x) = f(b, x)] = Pr
x∼Dµ

[x ∈ VS ]· Pr
x∼DµS

[f(x) = 1]+ Pr
x∼Dµ

[x ∈ VU ]· Pr
x∼DµU

[f(x) = 0].

Again by using the distinguishers 0 and 1, it must be that

1

2
− ϵδ′

4
≤ Pr

x∼Dµ

[x ∈ VS ], Pr
x∼Dµ

[x ∈ VU ] ≤
1

2
+

ϵδ′

4
. (6.19)

Then, by combining Equations 6.15 and 6.19 it follows that

Pr
x∼Dµ

[x ∈ VS ] · Pr
x∼DµS

[f(x) = 1]− Pr
x∼Dµ

[x ∈ VU ] · Pr
x∼DµU

[f(x) = 1] ≤ ϵδ′

2
. (6.20)

Lastly, we need handle the signs separately. If Prx∼Dµ [x ∈ VS ] ≤ Prx∼Dµ [x ∈ VU ], then by
Equation 6.19 it follows that

Pr
x∼Dµ

[x ∈ VU ]−
ϵδ′

2
≤ Pr

x∼Dµ

[x ∈ VS ].

If we plug this into Equation 6.20, we conclude that
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∣∣∣ Pr
x∼DµS

[f(x) = 1]− Pr
x∼DµU

[f(x) = 1]
∣∣∣ ≤ ϵδ′

1/2− ϵδ′/4
. (6.21)

On the other hand, if Prx∼Dµ [x ∈ VS ] > Prx∼Dµ [x ∈ VU ], the same argument holds symmet-
rically by using the distinguisher −f instead of f . By Definition 6.2, Equation 6.21 corresponds
exactly to stating that distributions DµS and DµU are (F , O(ϵ/δ)-indistinguishable. Then, by the
definition of a model (Definition 6.7), this corresponds to stating that µU is an (F , O(ϵ/δ))-model
for S, exactly as we wanted to show.

Then, by Claim 6.16, we know that µU is a (δ,O(ϵ))-dense measure on U , and by Claim 6.18
we know that µU is an (F , O(ϵ/δ))-model for S. Therefore, we have found the required model for
S as specified in Theorem 6.10, thus proving the Dense Model Theorem.

6.3 Our proposed DMT++

After having understood the how IHCL implies DMT, we now propose our DMT++ statement,
following the same general ideas outlined in Chapters 4 and 5 (i.e., by using a multicalibrated
partition P). One of the issues that complicate the generalization of DMT++ is that it is unclear
how to generalize the notion of pseudodensity. That is, in IHCL++ we are able to remove the δ-
weakly hardness assumption on g, and we generalized the density parameter δ by using the balance
parameter kp of g on each P ∈ P . This balance parameter applies to an arbitrary function g.
Likewise, for the DMT++ statement we hope to generalize the notion of (ϵ, δ)-pseudodensity, so
that it can apply to an arbitrary set S ⊆ X .

We are able to do this generalization by using the MC definition directly, instead of going
through IHCL. That is, from the work of Trevisan et al. [TTV09], we know that a multiaccurate
predictor can shown both IHCL and DMT separately. Hence, we will obtain DMT++ by start-
ing with a multicalibrated predictor instead, rather than through the route MC → IHCL++ →
DMT++, which is the route we took to obtain PAME++ in Chapter 5. However, we use several
ideas from the proof that IHCL implies the DMT, which is why we included the proof in Sec-
tion 6.2: in particular, the instantiation of the distinguishers, the augmentation of the domain, and
the function g.

Our DMT++ and subsequent corollary are as follows:

Theorem 6.22 (DMT++). Let X be a finite domain, let S ⊆ X , let F be a family of
functions f : X → {0, 1}, and let ϵ, γ > 0. Let U = X \S. There exists a partition P ∈ Ft,q,k

of X with t = O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2), k = O(1/ϵ), which satisfies that for each
P ∈ P such that ηp ≥ γ, distributions UP∩S and UP∩U are (F , ϵp)-indistinguishable for all
P ∈ P, where ϵp = ϵ · vp · (1− vp) for

vp =
|P ∩ S|/|S|

2ηp
, ηp =

|P ∩ S|
2|S|

+
|P ∩ U |
2|U |

.

That is, UP∩U is an (F , ϵp)-model for the corresponding set P ∩ S with density |P ∩ U |/|U |.
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Definition 6.23. For notation purposes, we will use the abbreviations Sp := P ∩S and Up := P ∩U
for each P ∈ P.

Before we proceed to the proof of DMT++, we unpack what the statement is saying. We begin
with two sets S,U := X \ S, and we are looking for a partition of the domain:

Figure 6.2: Visual depiction of the DMT++ statement (Theorem 6.22).

The picture highlights an example set P ∈ P . For each P ∈ P , the set P splits into the two
parts Sp and Up, where Sp corresponds to the subset of P that is contained in S and Up corresponds
to the subset of P that is contained in U . (Notice that either Sp or Up can be empty, which occurs
in the cases where P is entirely contained in S or entirely contained in U .) Then, the DMT++

statement requires the uniform distribution over Up to be (F , ϵp)-indistinguishable from the uniform
distribution over Sp, where ϵp depends on the relative sizes of Sp and Up.

As in the case of ICHL++ and PAME++, when we compare DMT to the original DMT++, we
see that DMT++ is able to replicate the DMT locally within each P ∈ P ; namely, there is a model
for a subset of S within each set P ∈ P . Moreover, DMT++ removes the assumption of DMT:
in the case of DMT, the set S ⊆ X is assumed to be (ϵ, δ)-pseudodense. In the case of DMT++,
the result holds for an arbitrary set S ⊆ X , without any pseudodensity assumption. The same is
true for IHCL++ and PAME++, where we are able to replicate the original theorems locally while
removing the assumption. We further summarize the similarities between the three theorems in
Chapter 7.

Intuition behind the proof. The idea behind the proof of Theorem 6.22 is the following. We
will show that a multicalibrated partition P satisfies the conditions stated in the DMT++ theorem.
But in order to apply the MC partition theorem (Theorem 2.29), we need invoke it with a family
of distinguishers F and a function g. To do so, we will follow Impagliazzo’s idea and define F and
g similar to how we did it in Section 6.2 when showing that IHCL implies DMT. Namely, we will
augment the domain from X to V and consider the class of distinguishers that ignore the first bit of
x ∈ V . Similarly, we will define the function g as g(b, x) = b. Then, we will see that this definition
of g allows us to relate the parameter vp := EP [g(x)] for each P ∈ P to the “skewness” of each set
P ∈ P . That is, how contained P is into either S or U . In particular, we will see the following:
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• The larger vp, the more it is contained in S.

• The smaller vp, the more it is contained in U .

This is because g(b, x) = 1 if and only if x ∈ S, by definition of g. Since g is boolean, this
means that vp · |P | equals exactly the number of x ∈ P such that g(x) = 1.

Figure 6.3: Using IHCL to prove the DMT. The parameter vp determines the skewness of the set P into S.

As in the case of IHCL++, our DMT++ theorem is stronger and more general than the original
DMT theorem for the following reasons:

• In Theorem 6.22, we remove the (ϵ, δ)-pseudodensity assumption on the set S ⊆ X , but still
obtain the indistinguishability condition; namely, we find a distribution within each P such
that the set P ∩ S is (F , ϵ)-indistinguishable from it. The caveat is that this indistinguisha-
bility parameter ϵp depends on the size of P and the ratio |P ∩ S|/|S|, which can make the
indistinguishability parameter large.

• We provide a generalization of the notion of pseudodensity, and we are able to argue about
the density of each model with the general parameter |P ∩ U |/|U |, rather than using the
parameter δ in the original DMT statement (which we do not have, since we do not have the
(ϵ, δ)-pseudodensity assumption on S). When we show that our DMT++ implies the original
DMT statement, as it was the case in IHCL++ and PAME++, we will see that the density
guarantees on each distribution UP∩U imply that, when we “glue” the sets P ∈ P together and
bring back the assumption that S is (ϵ, δ)-pseudodense, we obtain that the “global” model
for S has density O(δ −O(ϵ)), as in the original DMT (Theorem 6.10).

• In our ++ theorem, the original DMT occurs both “locally” (on each P ∈ P) and “glob-
ally” (on X ). Theorem 4.11 states that IHCL occurs locally; namely, we obtain a hardcore
distribution HP within each P ∈ P . However, we can always “glue” the different hardcore
measures together Hp in order to obtain a hardcore measure H on X . Since g is strongly hard
on each Hp, g will also be strongly hard on the “glued” hardcore measure H. In Section 4.2,
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we will show that if we glue the different hardcore measures Hp together weighted by their
corresponding size parameter ηp := |P |/|X |, and if we bring back the assumption that g is
δ-weakly hard (which is the key assumption in the original IHCL statement), then the glued
hardcore set H has density at least 2δ on UX . That is, we have recovered the original IHCL
statement from our IHCL++ theorem.

Proof of Theorem 6.22. We begin by augmenting the domain X as we did in Section 6.2. From X ,
we build the sets

VS = {(1, x) | x ∈ S}

VU = {(0, x) | x ∈ X \ S}.

We then construct the augmented domain V as

V = VS ∪ VU .

Given the class of distinguishers F on X , the class of distinguishers on V corresponds to the same
set of functions f ∈ F , except that they ignore the first bit b ∈ {0, 1} of the elements x ∈ V . We
define the following function g : V → {0, 1}:

g(b, x) = b.

That is g, indicates whether x “comes from” S or U .
We can now invoke the approximate MC partition theorem (Theorem 2.29) in the domain V

with F , g, ϵ, γ, and where D corresponds to the distribution 1
2UVS

+ 1
2UVU

over V . (Defining D in
this way corresponds to the same way in which we defined the distribution in the proof that IHCL
implies DMT.) This gives us a partition P ∈ Ft,q,k with t = O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2),
k = O(1/ϵ) satisfying ∣∣∣ E

x∼P
[f(x) · (g(x)− vp)]

∣∣∣ ≤ ϵ

for all P ∈ P such that ηp ≥ γ. We remark that we can write x ∼ P instead of P(D)|P because in
this case D corresponds to the uniform distribution over X .

We claim that this partition P satisfies the conditions of Theorem 6.22. Fix any P ∈ P such
that ηp ≥ γ. First, we notice that since g is boolean and g(x) = 1 if and only if x ∈ S, by the
definition of D as 1

2UVS
+ 1

2UVU
, for each such P ∈ P ,

vp =
|P ∩ S|/|S|

|P ∩ S|/|S|+ |P ∩ U |/|U |
=
|P ∩ S|/|S|

2ηp
.

Recall that Sp denotes the set P ∩ S and Up denotes the set P ∩ S. We need to show that the
distributions USp and UUp are (F , ϵp)-indistinguishable, where

ϵp = ϵ · vp · (1− vp).
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By definition of indistinguishability, this corresponds to showing that∣∣∣ E
x∼Sp

[f(x)]− E
x∼Up

[f(x)]
∣∣∣ ≤ ϵ · vp · (1− vp).

(Notice that we write E instead of the formulation with Pr that appears in Definition 2.1. However,
since the functions f ∈ F are boolean, the two notions are equivalent by the fundamental bridge.)

Indeed, we see that

∣∣∣ E
x∼Sp

[f(x)]− E
x∼Up

[f(x)]
∣∣∣ = ∣∣∣∣∣Ex∼P [f(x)g(x)]

vp
− Ex∼P [f(x)(1− g(x))]

1− vp

∣∣∣∣∣ ≤ ϵ

vp · (1− vp)
,

as needed.

Remark 6.24. We remark that the indistinguishability parameter ϵp for each P , as it was the case
for IHCL++ and PAME++, degrades with the balance parameter of the set kp. Namely, recall
that kp = min{vp, 1−vp} denotes the balance of g on P . Then, 1

2 ·kp ≤ vp · (1−vp) ≤ kp, and hence
kp and vp · (1− vp) are equivalent up to a factor of 2. Therefore, we think of the term vp · (1− vp)

that appears in the denominator of ϵp as also corresponding to the balance of g on the set P ∈ P .

6.3.1 Recovering the original DMT from DMT++

Having proved the DMT++ theorem, we now show how to recover the original DMT theorem. As
we did for IHCL and PAME, the key idea is to “glue together” the models UP∩U for each “good”
P ∈ P . Namely, those P ∈ P that have ηp ≥ γ and kp ≥ τ for parameters γ, τ (Definition 4.13
from Chapter 4).

Recall that in the DMT statement, we are bringing back the assumption that the set S is
(Fm, ϵ, δ)-pseudodense. As we did in Chapter 4, we begin by showing an intermediate proposition:

Proposition 6.25. Let P be a partition of X as in Theorem 6.22. Moreover, assume that S is
(Fm, ϵ, δ)-pseudodense for some δ > 0. Then, for all P ∈ P such that ηp ≥ γ,

δ · |Sp|
|S|
≤ |Up|
|U |

+ ϵ.

Proof. Recall that by definition of pseudodensity, we know that for all f ∈ Fm,

δ · Pr
x∼S

[f(x) = 1]− ϵ ≤ Pr
x∼U

[f(x) = 1].

Fix some P ∈ P . We proceed similar to the proof of Proposition 4.12 in Chapter 4. Let fm ∈ Ft,q

where t = O(1/(ϵ′4γ) · log(|X |/ϵ′)), q = O(1/ϵ′2) be the partition membership function for P as
given by Definition 2.28. That is, Pi = f−1(i) for all of the k sets Pi ∈ P . Using this fm, we
construct the following function f : X → {0, 1}:

f(x) :=

{
1 if x ∈ P,

0 otherwise .
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That is, we can think of f as the indicator function for P . We claim that f ∈ Ft,q for the same
parameters t, q. Indeed, let Cm be the oracle-aided circuit that computes fm. It is enough that we
hard-wire the values 0, 1 as described above. (To know whether it should be 0 or 1 for each x ∈ X , we
use a look-up table.) Hence, the circuit that computes f is of size t = O(1/(ϵ4γ) · log(|X |/ϵ)) + |P|
and continues to have q = O(1/ϵ2) oracle gates (the same as for fm) [Bar22, §9.1.1.]. Since
|P| = O(1/ϵ) by Theorem 4.11, it follows that f ∈ Ft,q, since the term O(1/ϵ) is absorbed into t.

Then, by applying the pseudodensity assumption to this function f , we obtain that

δ · Pr
x∼S

[f(x) = 1]− ϵ ≤ Pr
x∼U

[f(x) = 1].

Then, since

Pr
x∼S

[f(x) = 1] =
|Sp|
|S|

, Pr
x∼U

[f(x) = 1] =
|Up|
|U |

,

it follows that
δ · |Sp|
|S|
≤ |Up|
|U |

+ ϵ.

Re-arranging, we obtain the inequality stated in Proposition 6.25.

Given this proposition, we can now proceed to the proof of DMT

Proof of DMT using DMT++. Let F ,X , ϵ, δ be the assumption parameters in the DMT statement
(Theorem 6.10). We define the parameters ϵ′ := ϵ2δ, γ := ϵϵ′, and invoke the DMT++ theorem
(Theorem 6.22) with these parameters ϵ′, γ. By DMT++ (Theorem 6.22), we obtain a partition
P ∈ Ft,q,k of X with t = O(1/(ϵ′4γ) · log(|X |/ϵ′)), q = O(1/ϵ′2), k = O(1/ϵ′) such that, for each
P ∈ P where ηp ≥ γ = αϵ′, there exists an (F , ϵ′p)-model UP∩U for the corresponding set P ∩ S.
Given these “little” measures UP∩U , we construct the claimed measure µ for S as follows: we define
µ to be the “weighted average” of the models UP∩U such that P ∈ P is (γ, τ)-good. Formally, for
each x ∈ U ,

µ(x) =
|Sp|
|S|
· 1

|Up|
· 1G(P ),

where P corresponds to the unique P ∈ P such that x ∈ P (which is unique since P is a partition).
That is, for the “good” P , µ assigns a probability mass of (|Sp|/|S|) · (1/|Up|), where the sets Sp, Up

for each P ∈ P are given by Theorem 6.22. Intuitively, µ corresponds to the weighted average of
the Up obtained from DMT++. The expression (|Sp|/|S|) ·(1/|Up|) should be understood as follows:
in order to choose a x ∈ U , we first choose a set P with probability |Sp|/|S|, and then choose one
of the points in Up ⊆ U for that P uniformly over Up. Note also that µ only assigns non-zero mass
to points in U , given that we are building a model for S.

Let vp as in Theorem 6.22. First, by Proposition 6.25 we know that for all P ∈ P such that
ηp ≥ γ,

|Sp|
|S|
· 1

|Up|
≤

(
1

δ
+

ϵ′ · |U |
δ · |Up|

)
· 1

|U |
.

Then, since
|Up|
|U |

= 2ηp(1− vp),
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it follows that

1

δ
+

ϵ′ · |U |
δ · |Up|

=
1

δ
+

ϵ′

2δηp(1− vp)
=

1

δ · (1−O(ϵ′/(ηp(1− vp)))
.

Recall that we only “glue up” the parts P that are (γ, τ)-good, and recall that 1G(P ) returns 1 if
ηp ≥ γ and kp ≥ τ , and 0 otherwise. Then, following a similar analysis as the one we did when
recovering the original IHCL from IHCL++ in Chapter 4, it follows that

E
P∼P

[
ϵ′

vp · (1− vp)
· 1G(P )

]
≤ ϵ′

τ
.

Therefore, by plugging in the definitions of the parameters, namely ϵ′ = ϵ2δ and τ = ϵδ, the density
of the “glued up” measure µ (when we only glue up the (γ, τ)-good sets) is equal to δ · (1−O(ϵ)).

Next, we show the indistinguishability condition; namely, that µ is an F , O(ϵ/δ)-model for S.
First we assume that all P ∈ P are such that ηp ≥ γ. By Theorem 6.22, we know that for all
P ∈ P , ∣∣ Pr

x∼Sp

f [(x) = 1]− Pr
x∼Up

[f(x) = 1]
∣∣ ≤ ϵ′p.

By the law of total probabilty, it follows that

Pr
x∈S

[f(x) = 1] =
∑
P∈P

Pr[f(x) = 1 | x ∈ Sp] · Pr[x ∈ Sp] =
∑
P∈P

Pr
x∼Sp

[f(x) = 1] · |Sp|
|S|

.

Next, we study the quantity Prx∼µ[f(x) = 1]. By definition of µ and by the law of total probability,
it follows that

Pr
x∼µ

[f(x) = 1] =
∑
P∈P

Pr[f(x) = 1 | x ∈ Up] · Pr[x ∈ Up] =
∑
P∈P

Prx∼Up [f(x) = 1] · |Sp|
|S|

,

since by the definition of µ, all values x ∼ µ are in U , and hence µ(x) is never contained in S.
Therefore, by the triangle inequality and the expressions above, it follows that∣∣∣ Pr

x∼S
[f(x) = 1]− Pr

x∼µ
[f(x) = 1]

∣∣∣ = ∣∣∣ ∑
P∈P

Pr
x∼Sp

[f(x) = 1] · |Sp|
|S|
−
∑
P∈P

Pr
x∼Up

[f(x) = 1] · |Up|
|U |

∣∣∣
=
∣∣∣ ∑
P∈P

(
Pr

x∼Sp

[f(x) = 1] · |Sp|
|S|
− Pr

x∼Up

[f(x) = 1] · |Up|
|U |

)∣∣∣
≤ S1

|S|
·
∣∣∣ Pr
x∼S1

[f(x) = 1]− Pr
x∼U1

[f(x) = 1]
∣∣∣+ · · ·+ |S|P||

|S|
·
∣∣∣ Pr
x∼S|P|

[f(x) = 1]− Pr
x∼U|P|

[f(x) = 1]
∣∣∣.

By applying Theorem 6.22 to all of the summands, the above expression becomes

|S1|
|S|
· ϵ′1 + · · ·+

|S|P||
|S|

· ϵ′|P| =
∑
P∈P

ϵ′p ·
|Sp|
|S|

=
∑
P∈P

ϵ′

vp · (1− vp)
· |Sp|
|S|
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≤
∑
P∈P

ϵ′

vp · (1− vp)
· 1
δ
· |Up|
|U |

=
1

δ

∑
P∈P

ϵ′

vp · (1− vp)
· |Up|
|U |

.

Since |Up|/|U | = 2ηp · (1− vp), it follows that each term in the summand is at most 2τ/vp ≤ 2ϵ′/τ .
Therefore, by a similar analysis as in the case of the density parameter,

E
P∼P

[
ϵ′

τ
· 1G(P )

]
≤ ϵ′

τ
,

since recall that we only glue up the pieces P that are (γ, τ)-good. By plugging in the definitions of
the parameters, namely ϵ′ = ϵ2δ and τ = ϵδ, we obtain that ϵ′/τ . Therefore, by plugging everything
together, we obtain that µ is an (F , O(ϵ/δ)-model for S. As we did in Chapter 4, we can modify
µ so that we obtain density exactly δ −O(ϵ) while maintaining O(ϵ/δ)-indistinguishability for the
model. Thus, we have recovered the original DMT theorem.
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7
The General Picture

Now what is science? (...) It is before all a classification, a manner of bringing
together facts which appearances separate, though they are bound together by some
natural and hidden kinship.

Henri Poincaré, The Value of Science (1907)

We conclude Part II of this thesis by describing the underlying principle behind the IHCL++

(Chapter 4), PAME++ (Chapter 5), and DMT++ (Chapter 6) statements, and how our general-
izations of the original IHCL, PAME, and DMT theorems relate to each other. Let us first re-state
the three ++ theorems together:

Theorem 7.1 (IHCL++, measure version). Let X be a finite domain, let F be a family of
functions f : X → {0, 1}, let g : X → {0, 1} be an arbitrary function, and let ϵ, γ > 0. There
exists a partition P ∈ Ft,q,k of X with t = O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2), k = O(1/ϵ)

which satisfies that for all P ∈ P such that ηp ≥ γ, there exists a distribution HP in P of
density 2kp in UP such that g is (F , ϵ/kp)-strongly hard on HP . That is,

∀f ∈ F , Pr
x∼HP

[f(x) = g(x)] ≤ 1/2 +
ϵ

kp
.

Theorem 7.2 (PAME++). Let F be any class of functions, let (X,B) be a joint distribution
on {0, 1}n × {0, 1} where X = Un and B = g(X) for an arbitrary boolean function g, and
let ϵ, γ > 0. There exists a partition P ∈ Ft,q,k of X with t = O(1/(ϵ4γ) · log(|X |/ϵ)),
q = O(1/ϵ2), k = O(1/ϵ) which satisfies that for all P ∈ P such that ηp ≥ γ, B|P has
non-uniform (F , ϵ/kp)-PAME at least log(1/(1 − kp)) = H∞(g(Up)) given X|P , where B|P
denotes the restriction of B on P and X|P the restriction of X on P .
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Theorem 7.3 (DMT++). Let X be a finite domain, let S ⊆ X , let F be a family of
functions f : X → {0, 1}, and let ϵ, γ > 0. Let U = X \S. There exists a partition P ∈ Ft,q,k

of X with t = O(1/(ϵ4γ) · log(|X |/ϵ)), q = O(1/ϵ2), k = O(1/ϵ), which satisfies that for each
P ∈ P such that ηp ≥ γ, distributions UP∩S and UP∩U are (F , ϵp)-indistinguishable for all
P ∈ P, where

ϵp = ϵ ·

(
|P ∩ S|/|S|

2ηp

)
·

(
1− |P ∩ S|/|S|

2ηp

)
.

That is, UP∩U is an (F , ϵp)-model for the corresponding set P ∩ S with density |P ∩ U |/|U |.

Each of the three theorems deals with a different object:

• In the case of IHCL, we are dealing with a function g.

• In the case of PAME, we are dealing with a joint distribution (X,B).

• In the case of DMT, we are dealing with a set S.

In the case of PAME, in this thesis we restricted the PAME theorem to the case where B = g(X)

for some function g, but more generally the PAME theorem deals with an arbitrary joint distribution
(X,B), and we could generalize our PAME++ theorem accordingly.

In the original theorems, we have a certain assumption that we must require for each object
in order for the theorem to be true:

• In the case of IHCL, function g is assumed to be δ-weakly hard for some parameter δ.

• In the case of PAME, distribution B is assumed to be (1 − 2−r)-hard to predict for some
parameter r.

• In the case of DMT, set S is assumed to be (ϵ, δ)-pseudodense for some parameters ϵ, δ.

Given these assumptions, the original IHCL, PAME, and DMT statements are able to conclude
the following:

• In the case of IHCL, we find a 2δ-dense hardcore set/measure.

• In the case of PAME, we find that B has PAME at least r.

• In the case of DMT, we find a δ-dense model for S.

Importantly, there are two separate parts in these conclusions. One deals with a sort of density
guarantee (which is captured by the δ parameter) and another deals with an indistinguishability
guarantee (which is captured with the parameter ϵ):

• In the case of IHCL, the density guarantee ensures that the hardcore sets/measures have
density at least 2δ on |X | (or on UX for the measure version). The indistinguishability
guarantee ensures that g is indeed ϵ-strongly hard on the set/measure (hence making it a
“hardcore” set/measure).
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• In the case of PAME, to show that B has PAME at least r we show that there exists a random
variable C jointly distributed with X such that 1) C has average min-entropy at least r, and
2) (X,C) and (X,B) are ϵ-indistinguishable. Hence, we can understand condition 1) as a type
of “density” guarantee, and condition 2) corresponds to an indistinguishability guarantee.

• In the case of DMT, the density guarantee ensures that the model has density at least δ, and
the indstinguishability guarantee ensures that the model is indeed a model; namely, that the
model is indstinguishable from the distribution induced by the set S.

One of the key ideas behind our ++ generalizations is that we should keep a separation between
the density guarantees and the indistinguishability guarantees. This is precisely what allows us to
remove the assumption from the original theorems in our ++ generalizations while maintaining
the same type of conclusion; namely, a multicalibrated partition is what allows us to prove the
indistinguishability guarantee in the conclusions, without having to rely on the assumptions that
are necessary in the original theorems. Because we remove the assumptions from the original
theorems, we no longer have parameter δ (which we think of as the “density”) parameter in the
++ theorem. Thus, the ++ theorems require generalizing the δ “density” parameter so that it can
apply to an arbitrary object. In our ++ theorems, this δ parameter is generalized by using the
balance parameter kp and the size parameter ηp of the set P in the partition instead.

With this in mind, now summarize the key underlying principles behind our ++ theorems.
First, all of our ++ theorems consist of providing a partition P of the domain such that the
original theorem “occurs” locally on each piece P of the partition P. Because we prove our ++

theorems using a multicalibrated partition P, one of the key aspect of our proofs is showing that a
multicalibrated partition is such that the original theorems are occurring “locally” on each P ∈ P .
In particular, the indistinguishability parameter ϵ then depends on some parameter of the piece P

(either on kp, the balance of g on P , or on ηp, the relative size of P in the domain).
All of our ++ theorems remove the assumptions on the objects that are necessary in the original

theorems:

• In the case of IHCL++, g is an arbitrary function.

• In the case of PAME++, B is an arbitrary distribution.

• In the case of DMT++, S is an arbitrary model.

The following describes the type of indistinguishability guarantees achieved by our ++ theorems:

• In the case of IHCL++, we find a hardcore set within each piece P of the partition. This
corresponds to the indstinguishability guarantee, given that g is strongly hard on the hardcore
set. In particular, this strong hardness is with respect to the indistinguishability parameter
ϵ/kp, which varies on each P ∈ P .

• In the case of PAME++, we find a random variable C|P defined on each P such that
(X|P , B|P ) and (X|P , CP ) are ϵ/kp-indistinguishable. Again, the indistinguishability param-
eter on each P ∈ P depends on the parameter kp, which varies on each P ∈ P . Namely, the
more balanced g is on P , the better the indistinguishability guarantee becomes.
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• In the case of DMT++, we find a distribution defined on each P ∈ P such that it is a model
for a corresponding set inside P . The indistinguishability parameter for the model, ϵp, also
varies in each P ∈ P .

We understand each of these ϵp as a “local” indistinguishability guarantee of the object on each
P ∈ P .

Regarding the density guarantees, as we have explained, each of the ++ theorems required
generalizing the density parameters, which we do not have in the ++ theorems given that we
removed the assumptions. In each ++ theorem, achieving a generalized density guarantee is as
follows (it is thus helpful to think of kp as a generalization of the parameter δ):

• In the case of IHCL++, the density of each of the hardcore set that exists on every P ∈ P is
given by 2kp.

• In the case of PAME++, each of the random variable C|P that exists on every P ∈ P has
average min-entropy at least log(1/(1− kp)).

• In the case of DMT++, each of the models that exists on every P ∈ P has density |P ∩U |/|U |,
where U corresponds to the complement of the set S in the domain.

Lastly, the other key aspect of our ++ theorems, and which is also a unifying principle behind
our ++ theorems, is that by gluing the objects that we have found on each P ∈ P and by bringing
back the assumption that is present in the original theorems, we then recover exactly the original
theorem (both the density guarantee and the indistinguishability guarantee). We understand this
as saying that our ++ theorems hold both “locally” and “globally”: locally because we find the
object of interest within each P ∈ P , and globally because when we glue those “little” objects
together, we obtain a large object over the entire domain that satisfies the guarantees that we are
interested it (i.e., both density and indistinguishability). Namely:

• In the case of IHCL++, when we glue together the hardcore sets present in all P ∈ P , we
obtain a hardcore set over the domain, which recovers the original “global” indistinguishability
parameter ϵ. Moreover, when we bring back the assumption that g is δ-weakly hard, our
“local” density guarantee (namely, 2kp) implies that the glued hardcore set is 2δ-dense on
the domain. Hence, these two conditions together (namely, the global indistinguishability
guarantee and the global density guarantee) recover the original IHCL.

• In the case of PAME++, when we glue together the random variables C|P preset in all P ∈ P ,
we obtain a random variable C over the domain. We show that this C is such that (X,C)

and (X,B) are ϵ-indistinguishable, thus recovering the original “global” indistinguishability
guarantee. Moreover, when we bring back the assumption that B is (1−2−r)-hard to predict,
which in our thesis corresponds to B = g(X) where g is δ-weakly hard, then we obtain that
the glued distribution C has average min-entropy at least r. Hence, these two conditions
together (namely, the global indistinguishability guarantee and the global density guarantee)
recover the original PAME theorem.
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• In the case of DMT++, when we glue together the models present in all P ∈ P , we obtain
a distribution over the domain such that it is an ϵ-model for the set S. Hence, this recovers
the original “global” indistinguishability guarantee. Moreover, when we bring back the as-
sumption that S is (ϵ, δ)-pseudodense , then we obtained that the glued model has density δ.
Hence, these two conditions together (namely, the global indistinguishability guarantee and
the global density guarantee) recover the original DMT theorem.

Hence, all of these observations together explain the parallels between the IHCL++, PAME++,
and DMT++ statements and describe their underlying principles.

Remark 7.4. In the discussion in this chapter, by simplicity, we always say that the guarantees
hold for all P ∈ P . As we have seen, we actually only consider the sets P such that ηp ≥ γ for
some parameter γ, given that we are using the notion of approximate multicalibration.
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8
Conclusions and Future Work

In this thesis, we have obtained stronger and more general versions of theorems that are
implied by the notion of multiaccuracy (i.e., by the regularity lemma of Trevisan et al. [TTV09])
by considering the notion of multicalibration instead. In particular, we have obtained stronger and
more general versions of Impagliazzo’s Hardcore Lemma, the theorem of Vadhan and Zheng that
characterizes the notion of pseudoentropy, and the Dense Model Theorem. The starting point of
this thesis consisted of the observation that the regularity lemma of Trevisan et al. corresponds to
the notion of multiaccuracy that has been recently developed in the field of algorithmic fairness.
In algorithmic fairness, the notion of multicalibration has been proposed as a strenghtening of the
notion of multiaccuracy, and the fairness literature has shown how to construct a multicalibrated
predictor. Then, by using a multicalibrated predictor as our main tool, we cast it back into the
realm of complexity theory and study how the implications of the regularity lemma are modified.
In particular, since multicalibration is a stronger notion than multiaccuracy, in doing so we are able
to obtain stronger and more general versions of the original theorems, all of which are fundamental
theorems in theoretical computer science that have been known for years.

Our key observation for proving our strengthened and more general IHCL++, PAME++, and
DMT++ theorems is that a multicalibration partition of the domain yields some sort of “indis-
tinguishability for free” on each piece P of the partition. This allows us to replicate the original
theorems within each piece P while maintaining the same indistinguishability conclusion as in the
original theorem. We are also able to provide a density guarantee inside each P such that, when we
glue the objects of interest that we have obtained in each partition and bring back the assumption of
the original theorems, we recover the original density and indistinguishability parameters. Another
key aspect of our proofs has been to exploit the connections that exist between the IHCL, PAME,
and DMT theorems. Namely, after showing our new IHCL++ theorem, we obtain our PAME++

and DMT++ from the connections between IHCL and PAME and between IHCL and DMT. In
particular, to prove our PAME++ statement, first we show that IHCL implies PAME, and then
we plug our IHCL++ statement into this connection. In the case of DMT, while we prove DMT++

directly from a multicalibrated partition rather than plugging IHCL++ into the proof that IHCL
implies DMT, in doing so we use some key ideas from the proof that IHCL implies DMT.
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The main conclusion of our thesis is that, by casting back notions and techniques that have
recently originated in algorithmic fairness back to the realm of complexity theory, we obtain a deep
and fruitful connection between the two fields. We expect this connection to yield many other
interesting results. We conclude this thesis by pointing to some other results that can potentially
emerge from this connection between fairness and complexity theory. Some of these future directions
are part of our work in progress, and hence we also briefly describe our current thoughts on how
these other new results can be obtained.

8.1 Multi-class multicalibration

As explained in Chapter 5, in proving our PAME++ theorem we are actually using a more restrictive
version of the PAME theorem shown in the work of Vadhan & Zheng [VZ13]. In particular, our
PAME++ theorem should be generalized in two different ways. First, it is not necessary that we set
X = Un and B = g(X), and our same proofs should go through for an arbitrary joint distribution
(X,B). In that case, the assumption that g is δ-weakly hard would become the assumption that B

is (1− 2r)-hard to predict.
Second, the PAME theorem of Vadhan & Zheng works for a joint distribution (X,B) on the

domain {0, 1}n × {0, 1}ℓ for ℓ = O(logn), whereas we restricted our PAME++ results to the case
where ℓ = 1 (i.e., B is boolean). The reason why we chose to do so is because ℓ = 1 allows us to use
the original notion of multicalibration, whereas going into the case where ℓ > 1 would require using
a multi-class version of the notion of multicalibration. Namely, all throughout our thesis, we have
assumed that a multicalibrated predictor is always real-valued. However, it makes sense to consider
the notion of multicalibration in the multi-class setting; namely, when the outputs of the predictor
h correspond to ℓ-bit vectors, that is, h : X → {0, 1}ℓ. Such a notion of multicalibration has not
yet received much attention in the literature, with the exception of the works on omnipredictors
[GKR+21] and on low-degree multicalibration [GKSZ22]. In the former, multi-class multicalibration
is defined using the notion of covariance, whereas in the latter, multi-class multicalibration is defined
using inner products. Both ideas make sense because in the multi-class setting we need to somehow
transform a vector into a real number, given that h outputs an ℓ-bit vector yet the ϵ parameter in
multicalibration is a real number.

We have a different notion of multi-class multicalibration in mind, which is the following one:
Definition 8.1 (Multi-class multicalibration). Let F : X × {0, 1}ℓ → [0, 1], g : X × {0, 1}ℓ → [0, 1].
A predictor h : X → {0, 1}ℓ is ϵ-multicalibrated if for all f ∈ F and for all v ∈ range(h),∣∣∣ E

x∼X, b∼{0,1}ℓ
[f(x, b) · (g(x, b)− h(x, b)) · 1[h(x, b) = v]]

∣∣∣ ≤ ϵ.

(From this definition, one would then consider the corresponding approximate MC relaxation,
as we did in the case where h is real-valued in Chapter 2.) We suspect that this definition of multi-
class multicalibration is equivalent to the low-degree multicalibration notion of [GKSZ22]. Either
way, our hope is that Definition 8.1 would allow us to generalize our PAME++ theorem to the
setting where (X,B) is a joint distribution over {0, 1}n×{0, 1}ℓ. One remark about this approach
is that it would require us to re-prove the PAME++ theorem by starting from a multicalibrated
partition directly, rather than proving it using IHCL++. This is because it does not make sense
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definitionally to generalize IHCL to the multi-class setting, given that in it we need to compute the
probability that g(x) = h(x), and g is a real-valued function.

Lastly, another generalization that one could do to our PAME++ results is to consider the
uniform setting. That is, in the original work of Vadhan & Zheng [VZ13], they consider both the
non-uniform and uniform versions of the notion of PAME, and consequently their PAME theorem
is stated both in the non-uniform and uniform settings. Instead, in Chapter 5, we only considered
the non-uniform setting, and therefore we expect our results to carry on into the uniform setting
as well.

8.2 Distributional zero-knowledge

We remark that this section provides a high-level overview of how the paradigm of this thesis can
be applied to cryptographic settings, and therefore we do not include all of the necessary definitions
in this section. For the full definitions, we defer the reader to [CLP15] and [JP14].

Another reason for our interest in the notion of multi-class multicalibration is that we would also
need this generalization of the notion of multicalibration in order to obtain stronger cryptographic
results that are related to the regularity lemma of Trevisan et al. by applying our main paradigm.
Namely, Chung et al. [CLP15] showed that their notion of distributional zero-knowledge in cryp-
tography is much related to the regularity lemma of Trevisan et al. [TTV09]. Formally, Chung et
al. consider relaxations of the original notion of zero-knowledge in cryptography and study when
these relaxations are equivalent to their weak counter-parts [CLP15]. By “weak counter-parts”
they mean that the order of quantifiers in the notion of zero-knowledge is switched. That is, in the
original notion of zero-knowledge, we need to find a universal simulator S that is able to fool all
distinguishers D. Instead, in the notion of weak zero-knowledge, we allow the simulator S to be
distinguisher-dependent. Formally:
Definition 8.2 (Weak zero-knowledge, Definition 8 in [CLP15]). Let (P, V ) be an interactive proof
system for a language L. We say that (P, V ) is weak zero-knowledge if for every PPT verifier V ∗

and for every PPT distinguisher D, there exists a PPT simulator S and a negligible function ρ(·)
such that for every n ∈ N, x ∈ L ∩ {0, 1}N , and z ∈ {0, 1}∗, we have

|Pr[D(x, z,OutV ∗ [P (x)↔ V ∗(x, z)]) = 1]− Pr[D(x, z, S(x, z)) = 1]| ≤ ρ(n).

(For the definitions of the terms used in this definition, see [CLP15].) Chung et al. then define
the following relaxation of zero-knowledge, which they prove is equivalent to its weak counter-part:
Definition 8.3 (Distributional (T, t, ϵ)-zero-knowledge, Definition 15 in [CLP15]). Let (P, V ) be
an interactive proof system for a language L. We say that (P, V ) is distributional (T, t, ϵ)-zero-
knowledge if for every n ∈ N, every joint distribution (Xn, Yn, Zn) over (L∩{0, 1}n)×{0, 1}∗×{0, 1}∗,
and every t(n)-size verifier, there exists a randomized T (n)-size simulator S such that for every
randomized t(n)-size distinguisher D, we have

|Pr[D(Xn, Zn,OutV ∗ [P (Xn, Yn)↔ V ∗(Xn, Zn)]) = 1]− Pr[D(Xn, Zn, S(Xn, Zn)) = 1]| ≤ ϵ(n).

Given the equivalence between this notion and its weak counter-part, Chung et al. then prove
the following theorem:
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Theorem 8.4 (A laconic prover implies distributional ZK; Theorem 21 in [CLP15]). Let (P, V )

be an interactive proof system for a language L, and suppose that the prover P has communication
complexity ℓ(n); i.e., the total length of the messages sent by P is ℓ(n), where n is the length of
the common input x. Then, for every function t′(n) ≥ Ω(n) and ϵ′(n), (P, V ) is distributional
(T ′, t′, ϵ′)-zero-knowledge, where

T ′(n) = O

(
2ℓ(n) · t

′(n)3 ln(t′(n))
ϵ′(n)4

)
.

In the literature, this theorem is sometimes called the interactive regularity lemma, given that
Chung et al. show that this theorem implies a version of the regularity lemma of Trevisan et al.
[TTV09], and they also show how to prove the Dense Model Theorem using Theorem 8.4.

But the direction that we are interested in for future work is the one considered in the paper
by Jetchev and Pietrazk [JP14], where they show that the regularity lemma implies Theorem 8.4.
In particular, Jetchev and Pietrazk prove the following variant of the regularity lemma:

Theorem 8.5 ([JP14]). Consider a joint distribution (X,A) on a set X × {0, 1}ℓ. For any family
F of distinguishers f : X × {0, 1}ℓ → {0, 1}, there exists a simulator h : X → {0, 1}ℓ such that

1. no function in F can distinguish (X,A) from (X,h(X)) with advantage ϵ, and

2. h is only O(23ℓϵ−2) times less efficient than the functions in F .

We remark that we can translate between the [JP14] and the [TTV09] formulations of the
regularity lemma (incurring a loss 2ℓ in efficiency) as follows: Given a predictor h̃ : X → [0, 1], we
transform it into a predictor of the form h : X → {0, 1}ℓ by setting Pr[h][h(x) = b] = h̃(x, b), where
b is drawn from {0, 1}ℓ.

On a high level, the proof that the regularity lemma of [JP14] implies Theorem 8.5 by Chung et
al. follows by instantiating the domain X as (Xn, Yn, Zn), the distinguishers F as circuits of size t,
and the arbitrary function g as g(Xn, Yn, Zn) = M , where M ∈ {0, 1}ℓ denotes the messages sent by
the (laconic) prover P (Xn, Yn) when interacting with the verifier V ∗(Xn, Zn). Then, we apply the
regularity lemma to obtain a simulator h that satisfies the required indistinguishability guarantee,
and from this h we build a zero-knowledge simulator S that satisfies the notion of distributional zero-
knowledge (Definition 8.3). The fundamental idea is that we can build a zero-knowledge simulator
that satisfies the definition of distributional zero-knowledge from a multiaccurate predictor h.

Therefore, this type of implication falls exactly into the paradigm that we have studied in
this thesis: namely, the work of [JP14] shows that we can prove the key theorem of [CLP15] on
interactive proof systems and distributional zero-knowledge (Theorem 8.4) using a multiaccurate
predictor. Therefore, the question becomes: If we start with a multicalibrated predictor instead,
what stronger theorem do we obtain? In this case, due to the nature of Theorem 8.4, we suspect
that starting with a multicalibrated predictor will yield a stronger version of the definition of
distributional zero-knowledge, such that an interactive proof system with a laconic prover can
achieve this stronger notion. Because in this case the predictor h takes n-bit strings as inputs
(given that in the definition of distributional zero-knowledge we are considering the joint distribution
(Xn, Yn, Zn) over (L∩{0, 1}n)×}0, 1}∗×{0, 1}∗), this is why we will need the more general notion of
multi-class multicalibration in order to achieve a stronger distributional zero-knowledge definition
using the paradigm of this thesis. We believe that this would be a very interesting result to achieve,
given that it would extend our paradigm to the field of cryptography.
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8.3 Other future directions

Another potential future direction in the setting of cryptography is that of leakage resilient crypto-
graphy. Namely, in the work of Jetchev and Pietrzak, the original motivation is to show how to
use their variant of the regularity lemma (namely, Theorem 8.5) to simplify the security proofs of
leakage-resilient and other cryptosystems whose security proofs rely on chain rules for computa-
tional entropy. Namely, in their setting, we think of the {0, 1}ℓ term in their Theorem 8.5 as a
short ℓ-bit auxiliary input to the distinguishers. As summarized in [JP14], the idea is to replace
the chain rules simulation-based arguments, where the required indistinguishability is provided by
the regularity lemma. Namely, Theorem 8.5 shows that the leakage {0, 1}ℓ can be “efficiently sim-
ulated”. Hence, this is another example of an implication that falls into our paradigm: That is, we
can use a multiaccurate predictor to prove certain chain rules for computational entropy (following
the proofs and ideas given in [JP14]). Then, if we start with a multicalibrated predictor instead,
what stronger implication would be obtain?

Outside of cryptography, another possible connection that falls into this paradigm is one that
relates the DMT and pseudoentropy. More concretely, in the work of Reingold et al., they charac-
terize the Dense Model Theorem in terms of pseudoentropy [RTTV08]. Given our DMT++ and
PAME++ statements, we believe that it would be interesting to analyze the connection pointed
out in [RTTV08]. For example, if we plug in our DMT++ into their characterization of DMT as
pseudoentropy, do we recover our PAME++ theorem, or do we obtain some other variant of it?

Lastly, another interesting research direction is to study how our ++ theorems change when
considering different notions of multicalibration. For example, Gopalan et al. recently proposed a
new relaxation of multicalibration, called swap multicalibration, which is a stronger notion than
the approximate multicalibration definition that we have used in this thesis, yet it is also effi-
ciently realizable [GKR23]. We believe that using swap multicalibration instead of approximate
multicalibration in our ++ theorems would allow us to obtain better parameters.
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Glossary

Notations

F set of distinguishers
f distinguisher
g arbitrarily complex function
h simulator/predictor
X domain (a finite set)
D probability distribution
D|P conditional distribution for P

E expectation
x ∼ D x is sampled from D
Pr probability
Xv level set of h at v

Λ λ-discretization
P partition of X
ηp size of P
vp expectation of g on Xv

kp balance of g on P

γ lower bound on ηp
τ lower bound on kp
eG(S, T ) number of edges between S and T

dG(S, T ) density for S and T

UX uniform distribution over X
µ measure on X
Dµ distribution for a measure µ

1 indicator random variable
1G indicator for (γ, τ)-good partition sets
Bern(v) Bernoulli random variable of parameter v

H Shannon entropy
H∞ min-entropy
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Abbreviations

MA multiaccurate
MC multicalibrated
OI outcome indistinguishability
IHCL Impagliazzo’s Hardcore Lemma
IHCL++ generalized Impagliazzo’s Hardcore Lemma
DMT Dense Model Theorem
DMT++ generalized Dense Model Theorem
PAME pseudo-average min-entropy (theorem)
PAME++ generalized PAME (theorem)
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